scholarly journals Natural variation in temperature-modulated immunity uncovers transcription factor bHLH059 as a thermoresponsive regulator in Arabidopsis thaliana

PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009290
Author(s):  
Friederike Bruessow ◽  
Jaqueline Bautor ◽  
Gesa Hoffmann ◽  
Ipek Yildiz ◽  
Jürgen Zeier ◽  
...  

Temperature impacts plant immunity and growth but how temperature intersects with endogenous pathways to shape natural variation remains unclear. Here we uncover variation between Arabidopsis thaliana natural accessions in response to two non-stress temperatures (22°C and 16°C) affecting accumulation of the thermoresponsive stress hormone salicylic acid (SA) and plant growth. Analysis of differentially responding A. thaliana accessions shows that pre-existing SA provides a benefit in limiting infection by Pseudomonas syringae pathovar tomato DC3000 bacteria at both temperatures. Several A. thaliana genotypes display a capacity to mitigate negative effects of high SA on growth, indicating within-species plasticity in SA—growth tradeoffs. An association study of temperature x SA variation, followed by physiological and immunity phenotyping of mutant and over-expression lines, identifies the transcription factor bHLH059 as a temperature-responsive SA immunity regulator. Here we reveal previously untapped diversity in plant responses to temperature and a way forward in understanding the genetic architecture of plant adaptation to changing environments.

2019 ◽  
Author(s):  
Friederike Bruessow ◽  
Jaqueline Bautor ◽  
Gesa Hoffmann ◽  
Jane E. Parker

AbstractTemperature impacts plant immunity and growth but how temperature intersects with endogenous pathways remains unclear. Here we uncover variation between Arabidopsis thaliana natural accessions in response to two non-stress temperatures (22°C and 16°C) affecting accumulation of the thermoresponsive stress hormone salicylic acid (SA) and plant growth. Analysis of differentially responding A. thaliana accessions shows that pre-existing SA provides a benefit in limiting bacterial pathogen infection at both temperatures. Several A. thaliana genotypes display a capacity to mitigate negative effects of high SA on growth, indicating within-species plasticity in SA - growth tradeoffs. An association study of temperature x SA variation, followed by physiological and immunity phenotyping of mutant and over-expression lines, identifies the transcription factor unfertilized embryo sac 12 (UNE12) as a temperature-responsive SA immunity regulator. Here we reveal previously untapped diversity in plant responses to temperature and a way forward in understanding the genetic architecture of plant adaptation to changing environments.


2021 ◽  
Author(s):  
Luis O Morales ◽  
Alexey Shapiguzov ◽  
Omid Safronov ◽  
Johanna Leppälä ◽  
Lauri Vaahtera ◽  
...  

Abstract Tropospheric ozone (O3) is a major air pollutant that decreases yield of important crops worldwide. Despite long-lasting research of its negative effects on plants, there are many gaps in our knowledge on how plants respond to O3. In this study, we used natural variation in the model plant Arabidopsis (Arabidopsis thaliana) to characterize molecular and physiological mechanisms underlying O3 sensitivity. A key parameter in models for O3 damage is stomatal uptake. Here we show that the extent of O3 damage in the sensitive Arabidopsis accession Shahdara (Sha) does not correspond with O3 uptake, pointing toward stomata-independent mechanisms for the development of O3 damage. We compared tolerant (Col-0) versus sensitive accessions (Sha, Cvi-0) in assays related to photosynthesis, cell death, antioxidants, and transcriptional regulation. Acute O3 exposure increased cell death, development of lesions in the leaves, and decreased photosynthesis in sensitive accessions. In both Sha and Cvi-0, O3-induced lesions were associated with decreased maximal chlorophyll fluorescence and low quantum yield of electron transfer from Photosystem II to plastoquinone. However, O3-induced repression of photosynthesis in these two O3-sensitive accessions developed in different ways. We demonstrate that O3 sensitivity in Arabidopsis is influenced by genetic diversity given that Sha and Cvi-0 developed accession-specific transcriptional responses to O3. Our findings advance the understanding of plant responses to O3 and set a framework for future studies to characterize molecular and physiological mechanisms allowing plants to respond to high O3 levels in the atmosphere as a result of high air pollution and climate change.


PLoS ONE ◽  
2006 ◽  
Vol 1 (1) ◽  
pp. e123 ◽  
Author(s):  
Laure Perchepied ◽  
Thomas Kroj ◽  
Maurice Tronchet ◽  
Olivier Loudet ◽  
Dominique Roby

2020 ◽  
Vol 126 (3) ◽  
pp. 413-422
Author(s):  
Laila Toum ◽  
Gabriela Conti ◽  
Francesca Coppola Guerriero ◽  
Valeria P Conforte ◽  
Franco A Garolla ◽  
...  

Abstract Background and Aims Single-stranded DNA oligodeoxynucleotides (ssODNs) have been shown to elicit immune responses in mammals. In plants, RNA and genomic DNA can activate immunity, although the exact mechanism through which they are sensed is not clear. The aim of this work was to study the possible effect of ssODNs on plant immunity. Key Results The ssODNs IMT504 and 2006 increased protection against the pathogens Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea but not against tobacco mosaic virus-Cg when infiltrated in Arabidopsis thaliana. In addition, ssODNs inhibited root growth and promoted stomatal closure in a concentration-dependent manner, with half-maximal effective concentrations between 0.79 and 2.06 µm. Promotion of stomatal closure by ssODNs was reduced by DNase I treatment. It was also diminished by the NADPH oxidase inhibitor diphenyleneiodonium and by coronatine, a bacterial toxin that inhibits NADPH oxidase-dependent reactive oxygen species (ROS) synthesis in guard cells. In addition it was found that ssODN-mediated stomatal closure was impaired in bak1-5, bak1-5/bkk1, mpk3 and npr1-3 mutants. ssODNs also induced early expression of MPK3, WRKY33, PROPEP1 and FRK1 genes involved in plant defence, an effect that was reduced in bak1-5 and bak1-5/bkk1 mutants. Conclusions ssODNs are capable of inducing protection against pathogens through the activation of defence genes and promotion of stomatal closure through a mechanism similar to that of other elicitors of plant immunity, which involves the BAK1 co-receptor, and ROS synthesis.


2017 ◽  
Vol 30 (11) ◽  
pp. 919-929 ◽  
Author(s):  
Daniel C. Wilson ◽  
Christine J. Kempthorne ◽  
Philip Carella ◽  
David K. Liscombe ◽  
Robin K. Cameron

Arabidopsis thaliana exhibits a developmentally regulated disease-resistance response known as age-related resistance (ARR), a process that requires intercellular accumulation of salicylic acid (SA), which is thought to act as an antimicrobial agent. ARR is characterized by enhanced resistance to some pathogens at the late adult-vegetative and reproductive stages. While the transition to flowering does not cause the onset of ARR, both processes involve the MADS-domain transcription factor SHORT VEGETATIVE PHASE (SVP). In this study, ARR-defective svp mutants were found to accumulate reduced levels of intercellular SA compared with wild type in response to Pseudomonas syringae pv. tomato. Double mutant and overexpression analyses suggest that SVP and SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO 1) act antagonistically, such that SVP is required for ARR to alleviate the negative effects of SOC1 on SA accumulation. In vitro, SA exhibited antibacterial and antibiofilm activity at concentrations similar to those measured in the intercellular space during ARR. In vivo, P. syringae pv. tomato formed biofilm-like aggregates in young susceptible plants, while this was drastically reduced in mature ARR-competent plants, which accumulate intercellular SA. Collectively, these results reveal a novel role for the floral regulators SVP and SOC1 in disease resistance and provide evidence that SA acts directly on pathogens as an antimicrobial agent. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2019 ◽  
Author(s):  
Sachin Heerah ◽  
Manpreet Katari ◽  
Rebecca Penjor ◽  
Gloria Coruzzi ◽  
Amy Marshall-Colon

ABSTRACTPlant responses to multiple stimuli must be integrated to trigger transcriptional cascades that lead to changes in plant metabolism and development. Light (L) and nitrogen (N) are two signaling pathways that are intimately connected to each other and to plant energy status. Here, we describe the functional role of the WRKY1 transcription factor in mediating the regulation between L and N signaling pathways in Arabidopsis thaliana. WRKY1 participates in genome-wide transcriptional reprogramming in leaves in response to individual and combined L and N signals. A regulatory network was identified, consisting of 724 genes regulated by WRKY1 and involved in both N and L signaling pathways. The loss of WRKY1 gene function has marked effects on the L and N response of genes involved in N uptake and assimilation (primary metabolism) as well as stress response pathways (secondary metabolism). Our results support a model in which WRKY1 enables plants to activate genes involved in the recycling of cellular carbon resources when L is limiting but N is abundant, and up-regulate amino acid metabolism genes when both L and N are limiting. In this potential energy conservation mechanism, WRKY1 integrates responses to N and light-energy status to trigger changes in plant metabolism.SummaryBased on transcriptome analysis, the WRKY1 transcription factor mediates regulation of nitrogen and light signaling pathways in a potential energy conservation mechanism.


Sign in / Sign up

Export Citation Format

Share Document