scholarly journals Arabidopsis thaliana natural variation in temperature-modulated immunity uncovers transcription factor UNE12 as a thermoresponsive regulator

2019 ◽  
Author(s):  
Friederike Bruessow ◽  
Jaqueline Bautor ◽  
Gesa Hoffmann ◽  
Jane E. Parker

AbstractTemperature impacts plant immunity and growth but how temperature intersects with endogenous pathways remains unclear. Here we uncover variation between Arabidopsis thaliana natural accessions in response to two non-stress temperatures (22°C and 16°C) affecting accumulation of the thermoresponsive stress hormone salicylic acid (SA) and plant growth. Analysis of differentially responding A. thaliana accessions shows that pre-existing SA provides a benefit in limiting bacterial pathogen infection at both temperatures. Several A. thaliana genotypes display a capacity to mitigate negative effects of high SA on growth, indicating within-species plasticity in SA - growth tradeoffs. An association study of temperature x SA variation, followed by physiological and immunity phenotyping of mutant and over-expression lines, identifies the transcription factor unfertilized embryo sac 12 (UNE12) as a temperature-responsive SA immunity regulator. Here we reveal previously untapped diversity in plant responses to temperature and a way forward in understanding the genetic architecture of plant adaptation to changing environments.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009290
Author(s):  
Friederike Bruessow ◽  
Jaqueline Bautor ◽  
Gesa Hoffmann ◽  
Ipek Yildiz ◽  
Jürgen Zeier ◽  
...  

Temperature impacts plant immunity and growth but how temperature intersects with endogenous pathways to shape natural variation remains unclear. Here we uncover variation between Arabidopsis thaliana natural accessions in response to two non-stress temperatures (22°C and 16°C) affecting accumulation of the thermoresponsive stress hormone salicylic acid (SA) and plant growth. Analysis of differentially responding A. thaliana accessions shows that pre-existing SA provides a benefit in limiting infection by Pseudomonas syringae pathovar tomato DC3000 bacteria at both temperatures. Several A. thaliana genotypes display a capacity to mitigate negative effects of high SA on growth, indicating within-species plasticity in SA—growth tradeoffs. An association study of temperature x SA variation, followed by physiological and immunity phenotyping of mutant and over-expression lines, identifies the transcription factor bHLH059 as a temperature-responsive SA immunity regulator. Here we reveal previously untapped diversity in plant responses to temperature and a way forward in understanding the genetic architecture of plant adaptation to changing environments.


2019 ◽  
Author(s):  
Sachin Heerah ◽  
Manpreet Katari ◽  
Rebecca Penjor ◽  
Gloria Coruzzi ◽  
Amy Marshall-Colon

ABSTRACTPlant responses to multiple stimuli must be integrated to trigger transcriptional cascades that lead to changes in plant metabolism and development. Light (L) and nitrogen (N) are two signaling pathways that are intimately connected to each other and to plant energy status. Here, we describe the functional role of the WRKY1 transcription factor in mediating the regulation between L and N signaling pathways in Arabidopsis thaliana. WRKY1 participates in genome-wide transcriptional reprogramming in leaves in response to individual and combined L and N signals. A regulatory network was identified, consisting of 724 genes regulated by WRKY1 and involved in both N and L signaling pathways. The loss of WRKY1 gene function has marked effects on the L and N response of genes involved in N uptake and assimilation (primary metabolism) as well as stress response pathways (secondary metabolism). Our results support a model in which WRKY1 enables plants to activate genes involved in the recycling of cellular carbon resources when L is limiting but N is abundant, and up-regulate amino acid metabolism genes when both L and N are limiting. In this potential energy conservation mechanism, WRKY1 integrates responses to N and light-energy status to trigger changes in plant metabolism.SummaryBased on transcriptome analysis, the WRKY1 transcription factor mediates regulation of nitrogen and light signaling pathways in a potential energy conservation mechanism.


2021 ◽  
Author(s):  
Jiuxiao Ruan ◽  
Huhui Chen ◽  
Tao Zhu ◽  
Yaoguang Yu ◽  
Yawen Lei ◽  
...  

Abstract In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 369-378 ◽  
Author(s):  
Ruth G Shaw ◽  
Diane L Byers ◽  
Elizabeth Darmo

Abstract A study of spontaneous mutation in Arabidopsis thaliana was initiated from a single inbred Columbia founder; 120 lines were established and advanced 17 generations by single-seed descent. Here, we report an assay of reproductive traits in a random set of 40 lines from generations 8 and 17, grown together at the same time with plants representing generation 0. For three reproductive traits, mean number of seeds per fruit, number of fruits, and dry mass of the infructescence, the means did not differ significantly among generations. Nevertheless, by generation 17, significant divergence among lines was detected for each trait, indicating accumulation of mutations in some lines. Standardized measures of mutational variance accord with those obtained for other organisms. These findings suggest that the distribution of mutational effects for these traits is approximately symmetric, in contrast to the usual assumption that mutations have predominantly negative effects on traits directly related to fitness. Because distinct generations were grown contemporaneously, each line was represented by three sublines, and seeds were equal in age, these estimates are free of potentially substantial sources of bias. The finding of an approximately symmetric distribution of mutational effects invalidates the standard approach for inferring properties of spontaneous mutation and necessitates further development of more general approaches that avoid restrictions on the distribution of mutational effects.


Sign in / Sign up

Export Citation Format

Share Document