scholarly journals WRKY1 mediates transcriptional crosstalk between light and nitrogen signaling pathways in Arabidopsis thaliana

2019 ◽  
Author(s):  
Sachin Heerah ◽  
Manpreet Katari ◽  
Rebecca Penjor ◽  
Gloria Coruzzi ◽  
Amy Marshall-Colon

ABSTRACTPlant responses to multiple stimuli must be integrated to trigger transcriptional cascades that lead to changes in plant metabolism and development. Light (L) and nitrogen (N) are two signaling pathways that are intimately connected to each other and to plant energy status. Here, we describe the functional role of the WRKY1 transcription factor in mediating the regulation between L and N signaling pathways in Arabidopsis thaliana. WRKY1 participates in genome-wide transcriptional reprogramming in leaves in response to individual and combined L and N signals. A regulatory network was identified, consisting of 724 genes regulated by WRKY1 and involved in both N and L signaling pathways. The loss of WRKY1 gene function has marked effects on the L and N response of genes involved in N uptake and assimilation (primary metabolism) as well as stress response pathways (secondary metabolism). Our results support a model in which WRKY1 enables plants to activate genes involved in the recycling of cellular carbon resources when L is limiting but N is abundant, and up-regulate amino acid metabolism genes when both L and N are limiting. In this potential energy conservation mechanism, WRKY1 integrates responses to N and light-energy status to trigger changes in plant metabolism.SummaryBased on transcriptome analysis, the WRKY1 transcription factor mediates regulation of nitrogen and light signaling pathways in a potential energy conservation mechanism.

2019 ◽  
Author(s):  
Friederike Bruessow ◽  
Jaqueline Bautor ◽  
Gesa Hoffmann ◽  
Jane E. Parker

AbstractTemperature impacts plant immunity and growth but how temperature intersects with endogenous pathways remains unclear. Here we uncover variation between Arabidopsis thaliana natural accessions in response to two non-stress temperatures (22°C and 16°C) affecting accumulation of the thermoresponsive stress hormone salicylic acid (SA) and plant growth. Analysis of differentially responding A. thaliana accessions shows that pre-existing SA provides a benefit in limiting bacterial pathogen infection at both temperatures. Several A. thaliana genotypes display a capacity to mitigate negative effects of high SA on growth, indicating within-species plasticity in SA - growth tradeoffs. An association study of temperature x SA variation, followed by physiological and immunity phenotyping of mutant and over-expression lines, identifies the transcription factor unfertilized embryo sac 12 (UNE12) as a temperature-responsive SA immunity regulator. Here we reveal previously untapped diversity in plant responses to temperature and a way forward in understanding the genetic architecture of plant adaptation to changing environments.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009290
Author(s):  
Friederike Bruessow ◽  
Jaqueline Bautor ◽  
Gesa Hoffmann ◽  
Ipek Yildiz ◽  
Jürgen Zeier ◽  
...  

Temperature impacts plant immunity and growth but how temperature intersects with endogenous pathways to shape natural variation remains unclear. Here we uncover variation between Arabidopsis thaliana natural accessions in response to two non-stress temperatures (22°C and 16°C) affecting accumulation of the thermoresponsive stress hormone salicylic acid (SA) and plant growth. Analysis of differentially responding A. thaliana accessions shows that pre-existing SA provides a benefit in limiting infection by Pseudomonas syringae pathovar tomato DC3000 bacteria at both temperatures. Several A. thaliana genotypes display a capacity to mitigate negative effects of high SA on growth, indicating within-species plasticity in SA—growth tradeoffs. An association study of temperature x SA variation, followed by physiological and immunity phenotyping of mutant and over-expression lines, identifies the transcription factor bHLH059 as a temperature-responsive SA immunity regulator. Here we reveal previously untapped diversity in plant responses to temperature and a way forward in understanding the genetic architecture of plant adaptation to changing environments.


Epigenomics ◽  
2020 ◽  
Author(s):  
Qijie Zhao ◽  
Jinan Guo ◽  
Yueshui Zhao ◽  
Jing Shen ◽  
Parham Jabbarzadeh Kaboli ◽  
...  

Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/ PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.


2021 ◽  
Author(s):  
Jiuxiao Ruan ◽  
Huhui Chen ◽  
Tao Zhu ◽  
Yaoguang Yu ◽  
Yawen Lei ◽  
...  

Abstract In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1335
Author(s):  
Marina Mostafizar ◽  
Claudia Cortes-Pérez ◽  
Wanda Snow ◽  
Jelena Djordjevic ◽  
Aida Adlimoghaddam ◽  
...  

The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.


2021 ◽  
Author(s):  
Kaho Suzuki ◽  
Yousuke Takaoka ◽  
Minoru Ueda

A rationally designed stapled JAZ peptide selectively inhibited MYCs, master-regulators of the jasmonate signaling in Arabidopsis thaliana. It is proposed as a novel chemical tool for the analysis of MYC related jasmonate signaling.


Sign in / Sign up

Export Citation Format

Share Document