scholarly journals Genetic analysis of the septal peptidoglycan synthase FtsWI complex supports a conserved activation mechanism for SEDS-bPBP complexes

PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009366
Author(s):  
Ying Li ◽  
Han Gong ◽  
Rui Zhan ◽  
Shushan Ouyang ◽  
Kyung-Tae Park ◽  
...  

SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try and understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.

2021 ◽  
Author(s):  
Ying Li ◽  
Han Gong ◽  
Rui Zhan ◽  
Shushan Ouyang ◽  
Kung-tae Park ◽  
...  

AbstractSEDS family peptidoglycan (PG) glycosyltransferases RodA and FtsW require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try and understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations and others affecting the activities of FtsWI on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.Author summaryBacterial cell division requires the synthesis of septal peptidoglycan by the widely conserved SEDS-bPBP protein complex FtsWI, but how the complex is activated during cell division is still poorly understood. Previous studies suggest that FtsN initiates a signaling cascade in the periplasm to activate FtsW. Here we isolated and characterized activated FtsW and FtsI mutants and confirmed that the signaling cascade for FtsW activation goes from FtsN to FtsQLB to FtsI and then to FtsW. The residues corresponding to mutations affecting FtsWI activation are clustered to a small region of the interaction interface between the pedestal domain of FtsI and the extracellular loop 4 of FtsW, suggesting that this interaction mediates activation of FtsW. This is strikingly similar to the proposed activation mechanism for the RodA-PBP2 complex, another SEDS-bPBP complex required for cell elongation. Thus, the two homologous SEDS-bPBP complexes are activated similarly by completely unrelated activators that modulate the interaction interface between the SEDS proteins and the bPBPs.


2021 ◽  
Author(s):  
Cynthia A. Hale ◽  
Logan Persons ◽  
Piet A. J. de Boer

The Tol-Pal system of Gram-negative bacteria helps maintain integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In E. coli , the five Tol-Pal proteins (TolQ, R, A, B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB and Pal also requires the presence of TolQ and/or TolA, each of the the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN attracts both proteins in an indirect fashion, and that PBP1A, PBP1B and CpoB are dispensable for their septal recruitment. However, the β-lactam aztreonam readily interferes with septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can recognize division sites in a separate fashion. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI and TolAIII requires TolQ and a combination of TolB, Pal, and CpoB, respectively. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli , this machinery contains over thirty distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining integrity of the outer-membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms, and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.


2007 ◽  
Vol 189 (18) ◽  
pp. 6512-6520 ◽  
Author(s):  
Danièle Joseleau-Petit ◽  
Jean-Claude Liébart ◽  
Juan A. Ayala ◽  
Richard D'Ari

ABSTRACT Growing bacterial L forms are reputed to lack peptidoglycan, although cell division is normally inseparable from septal peptidoglycan synthesis. To explore which cell division functions L forms use, we established a protocol for quantitatively converting a culture of a wild-type Escherichia coli K-12 strain overnight to a growing L-form-like state by use of the β-lactam cefsulodin, a specific inhibitor of penicillin-binding proteins (PBPs) 1A and 1B. In rich hypertonic medium containing cefsulodin, all cells are spherical and osmosensitive, like classical L forms. Surprisingly, however, mutant studies showed that colony formation requires d-glutamate, diaminopimelate, and MurA activity, all of which are specific to peptidoglycan synthesis. High-performance liquid chromatography analysis confirmed that these L-form-like cells contain peptidoglycan, with 7% of the normal amount. Moreover, the β-lactam piperacillin, a specific inhibitor of the cell division protein PBP 3, rapidly blocks the cell division of these L-form-like cells. Similarly, penicillin-induced L-form-like cells, which grow only within the agar layers of rich hypertonic plates, also require d-glutamate, diaminopimelate, and MurA activity. These results strongly suggest that cefsulodin- and penicillin-induced L-form-like cells of E. coli—and possibly all L forms—have residual peptidoglycan synthesis which is essential for their growth, probably being required for cell division.


Microbiology ◽  
2011 ◽  
Vol 157 (1) ◽  
pp. 251-259 ◽  
Author(s):  
Claudine Fraipont ◽  
Svetlana Alexeeva ◽  
Benoît Wolf ◽  
René van der Ploeg ◽  
Marie Schloesser ◽  
...  

During the cell cycle of rod-shaped bacteria, two morphogenetic processes can be discriminated: length growth of the cylindrical part of the cell and cell division by formation of two new cell poles. The morphogenetic protein complex responsible for the septation during cell division (the divisome) includes class A and class B penicillin-binding proteins (PBPs). In Escherichia coli, the class B PBP3 is specific for septal peptidoglycan synthesis. It requires the putative lipid II flippase FtsW for its localization at the division site and is necessary for the midcell localization of the class A PBP1B. In this work we show direct interactions between FtsW and PBP3 in vivo and in vitro by FRET (Förster resonance energy transfer) and co-immunoprecipitation experiments. These proteins are able to form a discrete complex independently of the other cell-division proteins. The K2–V42 peptide of PBP3 containing the membrane-spanning sequence is a structural determinant sufficient for interaction with FtsW and for PBP3 dimerization. By using a two-hybrid assay, the class A PBP1B was shown to interact with FtsW. However, it could not be detected in the immunoprecipitated FtsW–PBP3 complex. The periplasmic loop 9/10 of FtsW appeared to be involved in the interaction with both PBP1B and PBP3. It might play an important role in the positioning of these proteins within the divisome.


2016 ◽  
Vol 113 (34) ◽  
pp. E5052-E5061 ◽  
Author(s):  
Shishen Du ◽  
Sebastien Pichoff ◽  
Joe Lutkenhaus

Bacterial cell division is driven by the divisome, a ring-shaped protein complex organized by the bacterial tubulin homolog FtsZ. Although most of the division proteins inEscherichia colihave been identified, how they assemble into the divisome and synthesize the septum remains poorly understood. Recent studies suggest that the bacterial actin homolog FtsA plays a critical role in divisome assembly and acts synergistically with the FtsQLB complex to regulate the activity of the divisome. FtsEX, an ATP-binding cassette transporter-like complex, is also necessary for divisome assembly and inhibits division when its ATPase activity is inactivated. However, its role in division is not clear. Here, we find that FtsEX acts on FtsA to regulate both divisome assembly and activity. FtsX interacts with FtsA and this interaction is required for divisome assembly and inhibition of divisome function by ATPase mutants of FtsEX. Our results suggest that FtsEX antagonizes FtsA polymerization to promote divisome assembly and the ATPase mutants of FtsEX block divisome activity by locking FtsA in the inactive form or preventing FtsA from communicating with other divisome proteins. Because FtsEX is known to govern cell wall hydrolysis at the septum, our findings indicate that FtsEX acts on FtsA to promote divisome assembly and to coordinate cell wall synthesis and hydrolysis at the septum. Furthermore, our study provides evidence that FtsA mutants impaired for self-interaction are favored for division, and FtsW plays a critical role in divisome activation in addition to the FtsQLB complex.


2008 ◽  
Vol 190 (13) ◽  
pp. 4764-4771 ◽  
Author(s):  
Sangita Shah ◽  
Bhabatosh Das ◽  
Rupak K. Bhadra

ABSTRACT The cgtA gene, coding for the conserved G protein CgtA, is essential in bacteria. In contrast to a previous report, here we show by using genetic analysis that cgtA is essential in Vibrio cholerae even in a ΔrelA background. Depletion of CgtA affected the growth of V. cholerae and rendered the cells highly sensitive to the replication inhibitor hydroxyurea. Overexpression of V. cholerae CgtA caused distinct elongation of Escherichia coli cells. Deletion analysis indicated that the C-terminal end of CgtA plays a critical role in its proper function.


2020 ◽  
Vol 202 (9) ◽  
Author(s):  
Junghoon Lee ◽  
John V. Cox ◽  
Scot P. Ouellette

ABSTRACT Chlamydiae lack the conserved central coordinator protein of cell division FtsZ, a tubulin-like homolog. Current evidence indicates that Chlamydia uses the actin-like homolog, MreB, to substitute for the role of FtsZ in a polarized division mechanism. Interestingly, we observed MreB as a ring at the septum in dividing cells of Chlamydia. We hypothesize that MreB, to substitute for FtsZ in Chlamydia, must possess unique properties compared to canonical MreB orthologs. Sequence differences between chlamydial MreB and orthologs in other bacteria revealed that chlamydial MreB possesses an extended N-terminal region, harboring predicted amphipathicity, as well as the conserved amphipathic helix found in other bacterial MreBs. The conserved amphipathic helix-directed green fluorescent protein (GFP) to label the membrane uniformly in Escherichia coli but the extended N-terminal region did not. However, the extended N-terminal region together with the conserved amphipathic region directed GFP to restrict the membrane label to the cell poles. In Chlamydia, the extended N-terminal region was sufficient to direct GFP to the membrane, and this localization was independent of an association with endogenous MreB. Importantly, mutating the extended N-terminal region to reduce its amphipathicity resulted in the accumulation of GFP in the cytosol of the chlamydiae and not in the membrane. The N-terminal domain of MreB was not required for homotypic interactions but was necessary for interactions with cell division components RodZ and FtsK. Our data provide mechanistic support for chlamydial MreB to serve as a substitute for FtsZ by forming a ringlike structure at the site of polarized division. IMPORTANCE Chlamydia trachomatis is an obligate intracellular pathogen, causing sexually transmitted diseases and trachoma. The study of chlamydial physiology is important for developing novel therapeutic strategies for these diseases. Chlamydiae divide by a unique MreB-dependent polarized cell division process. In this study, we investigated unique properties of chlamydial MreB and observed that chlamydial species harbor an extended N-terminal region possessing amphipathicity. MreB formed a ring at the septum, like FtsZ in Escherichia coli, and its localization was dependent upon the amphipathic nature of its extended N terminus. Furthermore, this region is crucial for the interaction of MreB with cell division proteins. Given these results, chlamydial MreB likely functions at the septum as a scaffold for divisome proteins to regulate cell division in this organism.


Sign in / Sign up

Export Citation Format

Share Document