scholarly journals Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study

PLoS Medicine ◽  
2018 ◽  
Vol 15 (7) ◽  
pp. e1002629 ◽  
Author(s):  
Yuming Guo ◽  
Antonio Gasparrini ◽  
Shanshan Li ◽  
Francesco Sera ◽  
Ana Maria Vicedo-Cabrera ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1556 ◽  
Author(s):  
Daeeop Lee ◽  
Giha Lee ◽  
Seongwon Kim ◽  
Sungho Jung

In establishing adequate climate change policies regarding water resource development and management, the most essential step is performing a rainfall-runoff analysis. To this end, although several physical models have been developed and tested in many studies, they require a complex grid-based parameterization that uses climate, topography, land-use, and geology data to simulate spatiotemporal runoff. Furthermore, physical rainfall-runoff models also suffer from uncertainty originating from insufficient data quality and quantity, unreliable parameters, and imperfect model structures. As an alternative, this study proposes a rainfall-runoff analysis system for the Kratie station on the Mekong River mainstream using the long short-term memory (LSTM) model, a data-based black-box method. Future runoff variations were simulated by applying a climate change scenario. To assess the applicability of the LSTM model, its result was compared with a runoff analysis using the Soil and Water Assessment Tool (SWAT) model. The following steps (dataset periods in parentheses) were carried out within the SWAT approach: parameter correction (2000–2005), verification (2006–2007), and prediction (2008–2100), while the LSTM model went through the process of training (1980–2005), verification (2006–2007), and prediction (2008–2100). Globally available data were fed into the algorithms, with the exception of the observed discharge and temperature data, which could not be acquired. The bias-corrected Representative Concentration Pathways (RCPs) 4.5 and 8.5 climate change scenarios were used to predict future runoff. When the reproducibility at the Kratie station for the verification period of the two models (2006–2007) was evaluated, the SWAT model showed a Nash–Sutcliffe efficiency (NSE) value of 0.84, while the LSTM model showed a higher accuracy, NSE = 0.99. The trend analysis result of the runoff prediction for the Kratie station over the 2008–2100 period did not show a statistically significant trend for neither scenario nor model. However, both models found that the annual mean flow rate in the RCP 8.5 scenario showed greater variability than in the RCP 4.5 scenario. These findings confirm that the LSTM runoff prediction presents a higher reproducibility than that of the SWAT model in simulating runoff variation according to time-series changes. Therefore, the LSTM model, which derives relatively accurate results with a small amount of data, is an effective approach to large-scale hydrologic modeling when only runoff time-series are available.


2006 ◽  
Vol 19 (23) ◽  
pp. 6181-6194 ◽  
Author(s):  
Piers Mde F. Forster ◽  
Karl E. Taylor

Abstract A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphere–ocean general circulation models (AOGCMs). This “climate forcing” differs from the conventionally defined radiative forcing as it includes semidirect effects that account for certain short time scale responses in the troposphere. First, a climate feedback term is calculated from reported values of 2 × CO2 radiative forcing and surface temperature time series from 70-yr simulations by 20 AOGCMs. In these simulations carbon dioxide is increased by 1% yr−1. The derived climate feedback agrees well with values that are diagnosed from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor, and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. Partial compensation is found between longwave and shortwave feedback terms that lessens the intermodel differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in twentieth- and twenty-first-century simulations in the AOGCMs. The technique is validated using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings that are diagnosed agree with the conventional forcing time series within ∼10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of 2 differences in the longwave climate forcing time series, which may indicate problems with the modeling of well-mixed greenhouse gas changes. The simple diagnoses presented provides an important and useful first step for understanding differences in AOGCM integrations, indicating that some of the differences in model projections can be attributed to different prescribed climate forcing, even for so-called standard climate change scenarios.


2009 ◽  
Vol 1 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Marian Melo ◽  
Milan Lapin ◽  
Ingrid Damborska

Abstract In this paper methods of climate-change scenario projection in Slovakia for the 21st century are outlined. Temperature and precipitation time series of the Hurbanovo Observatory in 1871-2007 (Slovak Hydrometeorological Institute) and data from four global GCMs (GISS 1998, CGCM1, CGCM2, HadCM3) are utilized for the design of climate change scenarios. Selected results of different climate change scenarios (based on different methods) for the region of Slovakia (up to 2100) are presented. The increase in annual mean temperature is about 3°C, though the results are ambiguous in the case of precipitation. These scenarios are required by users in impact studies, mainly from the hydrology, agriculture and forestry sectors.


2020 ◽  
Vol 192 (44) ◽  
pp. E1347-E1356 ◽  
Author(s):  
Jonathan Wang ◽  
Saba Vahid ◽  
Maria Eberg ◽  
Shannon Milroy ◽  
John Milkovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document