scholarly journals A Novel Mouse Model for Non-Invasive Single Marker Tracking of Mammary Stem Cells In Vivo Reveals Stem Cell Dynamics throughout Pregnancy

PLoS ONE ◽  
2009 ◽  
Vol 4 (11) ◽  
pp. e8035 ◽  
Author(s):  
Benjamin J. Tiede ◽  
Leah A. Owens ◽  
Feng Li ◽  
Christina DeCoste ◽  
Yibin Kang
Author(s):  
Silmi Mariya

The mammary gland contains adult stem cells that are capable of self-renewal.  This population plays an important role in the development of mammary gland and breast cancer pathogenesis. The studies of mammary stem cells are limited due to the difficulty to acquire and expand adult stem cell population in an undifferentiated state. In this study, we developed mammosphere cultures of nulliparous cynomolgus monkeys (Macaca fascicularis; Mf) as a culture system to enrich mammary stem cells. This species has similarity of mammary gland structure as humans including anatomy, developmental stages, and lobule profile of mammary gland. The use of stem cells from primate animals is essential to bridge the knowledge gaps resulting from stem cell research using rodents for clinical trials in human. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured as monolayer and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for mammary stem cells was evaluated using qPCR. Cells were further differentiated with 3D approaches to evaluate morphology and organoid budding. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. The 3D differentiation in matrigel allowed for organoid formation. Mammary gland stem cells have been successfully differentiated which characterized by CSN2 marker expression and differentiation regulators marker STAT5 and GATA3. The results indicate that mammospheres can be successfully developed derived from breast tissue of nulliparous Mf collected via surgical biopsy. As the mammosphere allows for enrichment of mammary stem cell population, the findings also suggest that a 3-dimensional system is efficient as in-vitro model to study mammary stem cells and a useful system to study mammary differentiation in regards to cancer prevention.


2019 ◽  
Vol 20 (9) ◽  
pp. 2357 ◽  
Author(s):  
Eunmi Lee ◽  
Raziye Piranlioglu ◽  
Max S. Wicha ◽  
Hasan Korkaya

It is now widely believed that mammary epithelial cell plasticity, an important physiological process during the stages of mammary gland development, is exploited by the malignant cells for their successful disease progression. Normal mammary epithelial cells are heterogeneous and organized in hierarchical fashion, in which the mammary stem cells (MaSC) lie at the apex with regenerative capacity as well as plasticity. Despite the fact that the majority of studies supported the existence of multipotent MaSCs giving rise to both basal and luminal lineages, others proposed lineage restricted unipotent MaSCs. Consistent with the notion, the latest research has suggested that although normal MaSC subsets mainly stay in a quiescent state, they differ in their reconstituting ability, spatial localization, and molecular and epigenetic signatures in response to physiological stimuli within the respective microenvironment during the stages of mammary gland development. In this review, we will focus on current research on the biology of normal mammary stem cells with an emphasis on properties of cellular plasticity, self-renewal and quiescence, as well as the role of the microenvironment in regulating these processes. This will include a discussion of normal breast stem cell heterogeneity, stem cell markers, and lineage tracing studies.


1989 ◽  
Vol 80 ◽  
pp. 39-48 ◽  
Author(s):  
R Barraclough ◽  
P S Rudland

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Simon Junankar ◽  
Laura A. Baker ◽  
Daniel L. Roden ◽  
Radhika Nair ◽  
Ben Elsworth ◽  
...  

2020 ◽  
Vol 117 (30) ◽  
pp. 17796-17807 ◽  
Author(s):  
Toru Hiratsuka ◽  
Ignacio Bordeu ◽  
Gunnar Pruessner ◽  
Fiona M. Watt

Fluctuation in signal transduction pathways is frequently observed during mammalian development. However, its role in regulating stem cells has not been explored. Here we tracked spatiotemporal ERK MAPK dynamics in human epidermal stem cells. While stem cells and differentiated cells were distinguished by high and low stable basal ERK activity, respectively, we also found cells with pulsatile ERK activity. Transitions from Basalhi-Pulselo(stem) to Basalhi-Pulsehi, Basalmid-Pulsehi, and Basallo-Pulselo(differentiated) cells occurred in expanding keratinocyte colonies and in response to differentiation stimuli. Pharmacological inhibition of ERK induced differentiation only when cells were in the Basalmid-Pulsehistate. Basal ERK activity and pulses were differentially regulated by DUSP10 and DUSP6, leading us to speculate that DUSP6-mediated ERK pulse down-regulation promotes initiation of differentiation, whereas DUSP10-mediated down-regulation of mean ERK activity promotes and stabilizes postcommitment differentiation. Levels of MAPK1/MAPK3 transcripts correlated with DUSP6 and DUSP10 transcripts in individual cells, suggesting that ERK activity is negatively regulated by transcriptional and posttranslational mechanisms. When cells were cultured on a topography that mimics the epidermal−dermal interface, spatial segregation of mean ERK activity and pulses was observed. In vivo imaging of mouse epidermis revealed a patterned distribution of basal cells with pulsatile ERK activity, and down-regulation was linked to the onset of differentiation. Our findings demonstrate that ERK MAPK signal fluctuations link kinase activity to stem cell dynamics.


2016 ◽  
Vol 23 (13) ◽  
pp. 3396-3404 ◽  
Author(s):  
Denise L. Cecil ◽  
Meredith Slota ◽  
Megan M. O'Meara ◽  
Benjamin C. Curtis ◽  
Ekram Gad ◽  
...  

2020 ◽  
Author(s):  
Daniela Franco Bueno ◽  
Gerson Shigueru Kabayashi ◽  
Carla Cristina Gomes Pinheiro ◽  
Daniela Y S Tanikawa ◽  
Cassio Eduardo Raposo-Amaral ◽  
...  

Abstract Background. Bone reconstruction in congenital craniofacial differences, which affect about 2-3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stem cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent stem cells that can be isolated via non-invasive procedures. Here we analysed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during surgical rehabilitation of cleft p­­atients during palatoplasty, represent a novel source of MSCs with osteogenic potential. Methods. We obtained levator veli palatini muscle fragments, in non-invasive procedure during surgical rehabilitation of 5 unrelated cleft palate patients (palatoplasty surgery). The levator veli palatini muscle fragments was used to obtain the mesenchymal cells using pre-plating technique in a clean rooms infrastructure and all procedures were performed at good practices of manipulation conditions. To prove that levator veli palatini muscle are mesenchymal stem cells they were induced to flow cytometry analysis and to differentiation into bone, cartilage, fat and muscle. To demonstrate the osteogenic potential of these cells in vivo a bilateral full thickness calvarial defect model was made in immunocompentent rats.Results. Flow cytometry analysis showed that the cells were positive for mesenchymal stem cell antigens (CD29, CD73, CD90), while negative for hematopoietic (CD45) or endothelial cell markers (CD31). Moreover, these cells were capable of undergoing chondrogenic, adipogenic, osteogenic and skeletal muscle cell differentiation under appropriate cell culture conditions characterizing them as mesenchymal stem cell. Defects treated with CellCeramTM scaffolds seeded with levator veli palatini muscle cells showed significantly greater bone healing compared to defects treated with acellular scaffolds. Conclusion. We have demonstrated that cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stem cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.


2021 ◽  
Vol 28 ◽  
Author(s):  
Sanjeev Gautam ◽  
Sangita Biswas ◽  
Birbal Singh ◽  
Ying Guo ◽  
Peng Deng ◽  
...  

: There is a momentous surge in the development of stem cell technology as a therapeutic and diagnostic tools. Stem cell-derived cells are currently used in various clinical trials. However, key issues and challenges involve the low differentiation efficiency, integration, and functioning of transplanted stem cells-derived cells. Extraction of bone marrow, adipose, or other mesenchymal stem cells (MSCs) involves invasive methods, specialized skills, and expensive technologies. Urine-derived cells, on the other hand, are obtained by non-invasive methods. Samples can be obtained repeatedly from patients of any age. Urine-derived cells are used to generate reprogrammed or induced pluripotent stem cells (iPSCs), which can be cultured, and differentiated into various types of cell lineages for biomedical investigations and drug testing in vitro or in vivo using model animals of human diseases. Urine cell-derived iPSCs (UiPSCs) have emerged as a major area of research and immense therapeutic significance. Given that preliminary preclinical studies are successful in terms of safety and as a regenerative tool, the UiPSCs will pave the way to develop and expedite various types of autologous stem cell therapies.


2015 ◽  
Vol 3 (4) ◽  
pp. 608-616 ◽  
Author(s):  
Michael Barrow ◽  
Arthur Taylor ◽  
Daniel J. Nieves ◽  
Lara K. Bogart ◽  
Pranab Mandal ◽  
...  

Tracking stem cells in vivo using non-invasive techniques is critical to evaluate their efficacy and safety.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Christy L. Trejo ◽  
Gidsela Luna ◽  
Christopher Dravis ◽  
Benjamin T. Spike ◽  
Geoffrey M. Wahl

Sign in / Sign up

Export Citation Format

Share Document