scholarly journals Human levator veli palatini muscle: A novel source of mesenchymal stem cells for use in the rehabilitation of patients with congenital craniofacial malformations

2020 ◽  
Author(s):  
Daniela Franco Bueno ◽  
Gerson Shigueru Kabayashi ◽  
Carla Cristina Gomes Pinheiro ◽  
Daniela Y S Tanikawa ◽  
Cassio Eduardo Raposo-Amaral ◽  
...  

Abstract Background. Bone reconstruction in congenital craniofacial differences, which affect about 2-3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stem cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent stem cells that can be isolated via non-invasive procedures. Here we analysed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during surgical rehabilitation of cleft p­­atients during palatoplasty, represent a novel source of MSCs with osteogenic potential. Methods. We obtained levator veli palatini muscle fragments, in non-invasive procedure during surgical rehabilitation of 5 unrelated cleft palate patients (palatoplasty surgery). The levator veli palatini muscle fragments was used to obtain the mesenchymal cells using pre-plating technique in a clean rooms infrastructure and all procedures were performed at good practices of manipulation conditions. To prove that levator veli palatini muscle are mesenchymal stem cells they were induced to flow cytometry analysis and to differentiation into bone, cartilage, fat and muscle. To demonstrate the osteogenic potential of these cells in vivo a bilateral full thickness calvarial defect model was made in immunocompentent rats.Results. Flow cytometry analysis showed that the cells were positive for mesenchymal stem cell antigens (CD29, CD73, CD90), while negative for hematopoietic (CD45) or endothelial cell markers (CD31). Moreover, these cells were capable of undergoing chondrogenic, adipogenic, osteogenic and skeletal muscle cell differentiation under appropriate cell culture conditions characterizing them as mesenchymal stem cell. Defects treated with CellCeramTM scaffolds seeded with levator veli palatini muscle cells showed significantly greater bone healing compared to defects treated with acellular scaffolds. Conclusion. We have demonstrated that cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stem cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Franco Bueno ◽  
Gerson Shigueru Kabayashi ◽  
Carla Cristina Gomes Pinheiro ◽  
Daniela Y. S. Tanikawa ◽  
Cassio Eduardo Raposo-Amaral ◽  
...  

Abstract Background Bone reconstruction in congenital craniofacial differences, which affect about 2–3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study, we analyzed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate patients, represent a novel source of MSCs with osteogenic potential. Methods We obtained levator veli palatini muscle fragments (3–5 mm3), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic, and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model in immunocompetent rats. Results Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90, and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic, and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram™ scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. Conclusion Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.


2016 ◽  
Vol 8 (41) ◽  
pp. 7437-7444 ◽  
Author(s):  
Hongjun Song ◽  
Jenna M. Rosano ◽  
Yi Wang ◽  
Charles J. Garson ◽  
Balabhaskar Prabhakarpandian ◽  
...  

A dual-micropore-based microfluidic electrical impedance flow cytometer for non-invasive identification of the differentiation state of mesenchymal stem cells.


2020 ◽  
Author(s):  
Daniela Franco Bueno ◽  
Gerson Shigueru Kabayashi ◽  
Carla Cristina Gomes Pinheiro ◽  
Daniela Y S Tanikawa ◽  
Cassio Eduardo Raposo-Amaral ◽  
...  

Abstract Background. Bone reconstruction in congenital craniofacial differences, which affect about 2-3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study we analysed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate p­­atients, represent a novel source of MSCs with osteogenic potential. Methods . We obtained levator veli palatini muscle fragments (3-5 mm 3 ), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model was in immunocompentent rats. Results. Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90 and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram TM scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. Conclusion. Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo . Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.


Nanoscale ◽  
2020 ◽  
Author(s):  
Naishun Liao ◽  
Da Zhang ◽  
Ming Wu ◽  
Huang-Hao Yang ◽  
Xiaolong Liu ◽  
...  

Adipose tissue derived mesenchymal stem cell (ADSC)-based therapy is attractive for liver diseases, but the long-term therapeutic outcome is still far from satisfaction due to low hepatic engraftment efficiency of...


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3471-3481 ◽  
Author(s):  
Ron Zohar ◽  
Jaro Sodek ◽  
Christopher A.G. McCulloch

Abstract The progenitors for cells of bone, cartilage, fat, and muscle are thought to be derived from mesenchymal stem cells but despite extensive study of stromal cell differentiation, neither mesenchymal stem cells or the more committed, tissue-specific progenitors have been well-characterized. In this study we used flow cytometry to isolate from fetal rat periosteum a population of small, slowly cycling cells with low cytoplasmic granularity (S cells) that display stem cell characteristics. On plating, S cells exhibited a 90% higher labeling index with [3H]-thymidine compared to unsorted cells and when grown in culture generated cartilage, adipocyte, and smooth muscle phenotypes, in addition to bone. Only the S-cell population showed extensive self-renewal of cells with osteogenic potential. Electron microscopy showed that S cells have high nuclear:cytoplasmic ratios with large condensed nuclei and a paucity of cytoplasmic organelles. Freshly sorted suspensions of immunocytochemically stained S cells did not express differentiation-associated markers such as type I, II, and III collagens, alkaline phosphatase, or osteopontin. However, after attachment, S cells became immunopositive for collagens I, II, III, osteopontin, and also for the cell surface receptor CD44, which mediates cell attachment to hyaluronan and osteopontin. These studies show that viable osteogenic precursor cells with the stem cell characteristics of self-renewal, high proliferative capacity, and multipotentiality can be enriched from heterogeneous stromal cell populations with simple flow cytometric methods. These cells may be useful for regeneration of stromal tissues.


2020 ◽  
Vol 21 (24) ◽  
pp. 9471
Author(s):  
John Kelly Smith

This article provides a brief review of the pathophysiology of osteoarthritis and the ontogeny of chondrocytes and details how physical exercise improves the health of osteoarthritic joints and enhances the potential of autologous chondrocyte implants, matrix-induced autologous chondrocyte implants, and mesenchymal stem cell implants for the successful treatment of damaged articular cartilage and subchondral bone. In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-β. In conclusion, physical exercise done both by bone marrow-derived mesenchymal stem cell donors and recipients and by autologous chondrocyte donor recipients may improve the outcome of osteochondral regeneration therapy and improve skeletal health by downregulating osteoclastogenic cytokine production and upregulating antiosteoclastogenic cytokine production by circulating immune cells.


2021 ◽  
pp. 036354652098681
Author(s):  
Monketh Jaibaji ◽  
Rawan Jaibaji ◽  
Andrea Volpin

Background: Osteochondral lesions are a common clinical problem and their management has been historically challenging. Mesenchymal stem cells have the potential to differentiate into chondrocytes and thus restore hyaline cartilage to the defect, theoretically improving clincal outcomes in these patients. They can also be harvested with minimal donor site morbidity. Purpose: To assess the clinical and functional outcomes of mesenchymal stem cell implantation to treat isolated osteochondral defects of the knee. A secondary purpose is to assess the quality of the current available evidence as well as the radiological and histological outcomes. We also reviewed the cellular preparation and operative techniques for implantation. Study Design: Systematic review. Methods: A comprehensive literature search of 4 databases was carried out: CINAHL, Embase, MEDLINE, and PubMed. We searched for clinical studies reporting the outcomes on a minimum of 5 patients with at least 12 months of follow-up. Clinical, radiological, and histological outcomes were recorded. We also recorded demographics, stem cell source, culture technique, and operative technique. Methodological quality of each study was assessed using the modified Coleman methodology score, and risk of bias for the randomized controlled studies was assessed using the Cochrane Collaboration tool. Results: Seventeen studies were found, encompassing 367 patients. The mean patient age was 35.1 years. Bone marrow was the most common source of stem cells utilized. Mesenchymal stem cell therapy consistently demonstrated good short- to medium-term outcomes in the studies reviewed with no serious adverse events being recorded. There was significant heterogeneity in cell harvesting and preparation as well as in the reporting of outcomes. Conclusion: Mesenchymal stem cells demonstrated a clinically relevant improvement in outcomes in patients with osteochondral defects of the knee. More research is needed to establish an optimal treatment protocol, long-term outcomes, and superiority over other therapies. Registration: CRD42020179391 (PROSPERO).


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18685-18692
Author(s):  
Hiroki Masuda ◽  
Yoshinori Arisaka ◽  
Masahiro Hakariya ◽  
Takanori Iwata ◽  
Tetsuya Yoda ◽  
...  

Molecular mobility of polyrotaxane surfaces promoted mineralization in a co-culture system of mesenchymal stem cells and endothelial cells.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Xiaoyu Pu ◽  
Siyang Ma ◽  
Yan Gao ◽  
Tiankai Xu ◽  
Pengyu Chang ◽  
...  

Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1592
Author(s):  
Sevil Özer ◽  
H. Seda Vatansever ◽  
Feyzan Özdal-Kurt

Bone marrow mesenchymal stem cells (BM-MSCs) are used to repair hypoxic or ischemic tissue. After hypoxic the level of ATP is decreases, cellular functions do not continue and apoptosis or necrosis occur. Apoptosis is a progress of programmed cell death that occurs in normal or pathological conditions. In this study, we were investigated the hypoxic effect on apoptosis in mesenchymal stem cell. Bone marrow-derived stem cells were cultured in hypoxic (1% or 3%) or normoxic conditions 24, 96 well plates for 36 h. Cell viability was shown by MTT assay on 36 h. After fixation of cells with 4% paraformaldehyde, distributions of caspase-3, Bcl-2 and Bax with indirect immunoperoxidase technique, apoptotic cells with TUNEL assay were investigated. All staining results were evaluated using H-score analyses method with ANOVA, statistically. As a result, hypoxic condition was toxic for human mesenchymal stem cells and the number of death cell was higher in that than normoxic condition.


Sign in / Sign up

Export Citation Format

Share Document