scholarly journals Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27707 ◽  
Author(s):  
Fabricio de Carvalho ◽  
Erico T. Costa ◽  
Anamaria A. Camargo ◽  
Juliana C. Gregorio ◽  
Cibele Masotti ◽  
...  
2000 ◽  
Vol 111 (4) ◽  
pp. 1118-1121 ◽  
Author(s):  
A. Bellahcene ◽  
I. Van Riet ◽  
C. de Greef ◽  
N. Antoine ◽  
M. F. Young ◽  
...  

2008 ◽  
Vol 49 (7) ◽  
pp. 1374-1383 ◽  
Author(s):  
Antonino Neri ◽  
Sandra Marmiroli ◽  
Pierfrancesco Tassone ◽  
Luigia Lombardi ◽  
Lucia Nobili ◽  
...  

2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 1039-1046 ◽  
Author(s):  
G. Teoh ◽  
Y.-T. Tai ◽  
M. Urashima ◽  
S. Shirahama ◽  
M. Matsuzaki ◽  
...  

It has been reported that the activation of multiple myeloma (MM) cells by CD40 induces proliferation, growth arrest, and apoptosis. To determine whether the biologic sequelae of CD40 activation in MM cells depends on p53 function, we identified temperature-sensitive p53 mutations in the RPMI 8226 (tsp53E285K) and the HS Sultan (tsp53Y163H) MM cell lines. These cells were then used as a model system of inducible wtp53-like function because wild-type-like p53 is induced at permissive (30°C) but not at restrictive (37°C) temperatures. Using p21-luciferase reporter assays, we confirmed that CD40 induces p53 transactivation in RPMI 8226 and HS Sultan cells cultured under permissive, but not restrictive, conditions. Furthermore, CD40 activation of these MM cells under permissive, but not restrictive, temperatures increased the expression of p53 and p21 mRNA and protein. Importantly, CD40 activation induced the proliferation of RPMI 8226 and HS Sultan cells at restrictive temperatures and growth arrest and increased subG1 phase cells at permissive temperatures. These data confirmed that CD40 activation might have distinct biologic sequelae in MM cells, depending on their p53 status.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2914-2923 ◽  
Author(s):  
Helena Spets ◽  
Patrik Georgii-Hemming ◽  
Jan Siljason ◽  
Kenneth Nilsson ◽  
Helena Jernberg-Wiklund

Abstract A poor response to Fas-induced apoptosis is evident in some multiple myeloma (MM) cell lines and primary cells. In this study, we have examined the possibility to increase the sensitivity to Fas-induced apoptosis by pretreatment of MM cells with interferon-γ (IFN-γ) or interferon- (IFN-). Both IFN-γ and IFN- markedly increased the Fas-induced apoptosis in all cell lines tested (U-266-1970, U-266-1984, and U-1958). In the U-266-1970 and U-1958 cell lines, pretreatment with either IFN-γ or IFN- also inhibited proliferation in a dose-dependent manner. In contrast, IFN-γ activation of the Fas death pathway in the U-266-1984 cells was not accompanied by growth inhibition. Incubation with the IFNs increased the Fas antigen expression in one of three cell lines but did not alter the expression of Bcl-2 or Bax. The IFNs are important regulators of growth and survival in MM cells. Our results suggest that activation of Fas-mediated apoptosis is a novel mechanism by which the IFNs exert inhibitory effects on MM cells. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document