scholarly journals Streptococcus pneumoniae Serotype-2 Childhood Meningitis in Bangladesh: A Newly Recognized Pneumococcal Infection Threat

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32134 ◽  
Author(s):  
Samir K. Saha ◽  
Hassan M. Al Emran ◽  
Belal Hossain ◽  
Gary L. Darmstadt ◽  
Senjuti Saha ◽  
...  
Author(s):  
Bekele Sharew ◽  
Feleke Moges ◽  
Gizachew Yismaw ◽  
Wondwossen Abebe ◽  
Surafal Fentaw ◽  
...  

Abstract Background Antimicrobial-resistant strains of Streptococcus pneumoniae have become one of the greatest challenges to global public health today and inappropriate use of antibiotics and high level of antibiotic use is probably the main factor driving the emergence of resistance worldwide. The aim of this study is, therefore, to assess the antimicrobial resistance profiles and multidrug resistance patterns of S. pneumoniae isolates from patients suspected of pneumococcal infections in Ethiopia. Methods A hospital-based prospective study was conducted from January 2018 to December 2019 at Addis Ababa city and Amhara National Region State Referral Hospitals. Antimicrobial resistance tests were performed from isolates of S. pneumoniae that were collected from pediatric and adult patients. Samples (cerebrospinal fluid, blood, sputum, eye discharge, ear discharge, and pleural and peritoneal fluids) from all collection sites were initially cultured on 5% sheep blood agar plates and incubated overnight at 37 °C in a 5% CO2 atmosphere. Streptococcus pneumoniae was identified and confirmed by typical colony morphology, alpha-hemolysis, Gram staining, optochin susceptibility, and bile solubility test. Drug resistance testing was performed using the E-test method according to recommendations of the Clinical and Laboratory Standards Institute. Results Of the 57 isolates, 17.5% were fully resistant to penicillin. The corresponding value for both cefotaxime and ceftriaxone was 1.8%. Resistance rates to erythromycin, clindamycin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole were 59.6%, 17.5%, 38.6%, 17.5 and 24.6%, respectively. Multidrug resistance (MDR) was seen in 33.3% isolates. The most common pattern was co-resistance to penicillin, erythromycin, clindamycin, and tetracycline. Conclusions Most S. pneumoniae isolates were susceptible to ceftriaxone and cefotaxime. Penicillin has been used as a drug of choice for treating S. pneumoniae infection. However, antimicrobial resistance including multidrug resistance was observed to several commonly used antibiotics including penicillin. Hence, it is important to periodically monitor the antimicrobial resistance patterns to select empirical treatments for better management of pneumococcal infection.


2021 ◽  
Vol 9 (6) ◽  
pp. 1324
Author(s):  
Fernanda Raya Tonetti ◽  
Mikado Tomokiyo ◽  
Ramiro Ortiz Moyano ◽  
Sandra Quilodrán-Vega ◽  
Hikari Yamamuro ◽  
...  

Previously, we demonstrated that the nasal administration of Dolosigranulum pigrum 040417 differentially modulated the respiratory innate immune response triggered by the activation of Toll-like receptor 2 in infant mice. In this work, we aimed to evaluate the beneficial effects of D. pigrum 040417 in the context of Streptococcus pneumoniae infection and characterize the role of alveolar macrophages (AMs) in the immunomodulatory properties of this respiratory commensal bacterium. The nasal administration of D. pigrum 040417 to infant mice significantly increased their resistance to pneumococcal infection, differentially modulated respiratory cytokines production, and reduced lung injuries. These effects were associated to the ability of the 040417 strain to modulate AMs function. Depletion of AMs significantly reduced the capacity of the 040417 strain to improve both the reduction of pathogen loads and the protection against lung tissue damage. We also demonstrated that the immunomodulatory properties of D. pigrum are strain-specific, as D. pigrum 030918 was not able to modulate respiratory immunity or to increase the resistance of mice to an S. pneumoniae infection. These findings enhanced our knowledge regarding the immunological mechanisms involved in modulation of respiratory immunity induced by beneficial respiratory commensal bacteria and suggested that particular strains could be used as next-generation probiotics.


2010 ◽  
Vol 298 (1) ◽  
pp. L67-L78 ◽  
Author(s):  
Yasuki Yasuda ◽  
Yoko Matsumura ◽  
Kazuki Kasahara ◽  
Noriko Ouji ◽  
Shigeki Sugiura ◽  
...  

The immunological explanation for the “hygiene hypothesis” has been proposed to be induction of T helper 1 (Th1) responses by microbial products. However, the protective results of hygiene hypothesis-linked microbial exposures are currently shown to be unlikely to result from a Th1-skewed response. Until now, effect of microbial exposure early in life on airway innate resistance remained unclear. We examined the role of early life exposure to microbes in airway innate resistance to a respiratory pathogen. Specific pathogen-free weanling mice were nasally exposed to the mixture of microbial extracts or PBS (control) every other day for 28 days and intratracheally infected with Streptococcus pneumoniae 10 days after the last exposure. Exposure to microbial extracts facilitated colonization of aerobic gram-positive bacteria, anaerobic microorganisms, and Lactobacillus in the airway, compared with control exposure. In pneumococcal pneumonia, the exposure prolonged mouse survival days by suppressing bacterial growth and by retarding pneumococcal blood invasion, despite significantly low levels of leukocyte recruitment in the lung. Enhancement of airway resistance was associated with a significant decrease in production of leukocyte chemokine (KC) and TNFα, and suppression of matrix metalloproteinase (MMP-9) expression/activation with enhancement of tissue inhibitor of MMP (TIMP-3) activation. The exposure increased production of IFN-γ, IL-4, and monocyte chemoattractant-1 following infection. Furthermore, expression of Toll-like receptor 2, 4, and 9 was promoted by the exposure but no longer upregulated upon pneumococcal infection. Thus, we suggest that hygiene hypothesis is more important in regulating the PMN-dominant inflammatory response than in inducing a Th1-dominant response.


2005 ◽  
Vol 12 (1) ◽  
pp. 218-223 ◽  
Author(s):  
Daniel J. Sikkema ◽  
Nancy A. Ziembiec ◽  
Thomas R. Jones ◽  
Stephen W. Hildreth ◽  
Dace V. Madore ◽  
...  

ABSTRACT Weight-based assignments for immunoglobulin G1 (IgG1) and IgG2 subclass antibodies to Streptococcus pneumoniae capsular polysaccharides (PnPs) in antipneumococcal standard reference serum lot 89-S (lot 89-S), also known as lot 89-SF, have been determined for serotypes 1, 4, 5, 7F, 9V, and 18C. This extends the usefulness of lot 89-S beyond the IgG1 and IgG2 subclass assignments for serotypes 3, 6B, 14, 19F, and 23F made previously (A. Soininen, H. Kayhty, I. Seppala, and T. Wuorimaa, Clin. Diagn. Lab. Immunol. 5:561-566, 1998) to cover 11 major serotypes associated with the highest percentage of pneumococcal disease worldwide. A method of equivalence of absorbances in enzyme immunosorbent assays was used to determine the IgG1 and IgG2 antibody concentrations for the additional serotypes in lot 89-S, based on the subclass values previously assigned for PnPs serotypes 6B, 14, and 23F. This cross-standardization method assures consistency with previous antibody assignments in that reference serum. The newly assigned subclass values for serotype 9V, and previously assigned values for serotype 14, were used to quantitate PnPs antibodies in sera from adult and pediatric subjects immunized with a pneumococcal conjugate vaccine. There was a predominance of IgG1 anti-PnPs antibodies in pediatric sera and IgG2 anti-PnPs antibodies in the adult sera. The IgG1 and IgG2 subclass assignments for the 11 PnPs serotypes in antipneumococcal standard reference serum lot 89-S are useful for quantitating and characterizing immune responses to pneumococcal infection and vaccination regimens.


Biomedika ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 23-30
Author(s):  
Mustika Sari Hutabarat ◽  
Firdaus Hamid ◽  
Irawaty Djaharuddin ◽  
Alfian Zainuddin ◽  
Rossana Agus ◽  
...  

Streptococcus pneumoniae (pneumococcus) is a Gram-positive facultative anaerobic bacterium that is a major cause of morbidity and mortality worldwide. But the lack of reporting of disease by this bacterium in Indonesia, one of the causes is because the diagnosis of pneumococcal infection is often clinically not typical and conventional methods which are still the standard gold method often give false-negative results. So the purpose of this study was to evaluate the performance of culture and molecular diagnostic methods using the Polymerase Chain Reaction (PCR) technique in detecting Streptococcus pneumoniae in sputum clinical samples using the Autolysin (LytA) gene which is a virulence factor of this bacterium. 57 isolates from 60 samples were confirmed as Streptococcus sp through microscopic identification, culture, and biochemical tests. Then the sensitivity test with an optochin test of 9 (9%) compared the results descriptively with the PCR technique using the Autolysin A (LytA) gene which was obtained more sensitive by 15 (25%).


Author(s):  
Vicky Sender ◽  
Karina Hentrich ◽  
Birgitta Henriques-Normark

Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.


2020 ◽  
Author(s):  
BEKELE SHAREW ◽  
Feleke Moges ◽  
Gizachew Yismaw ◽  
Wondiwossen Abebe ◽  
Surafal Fentaw ◽  
...  

Abstract Backgrounds: Streptococcus pneumoniae is one of the leading causes of bacterial meningitis and pneumoniae in elderly people and children. Antimicrobial resistant strains of Streptococcus pneumoniae has been detected in all parts of the world and become one of the greatest challenges to global public health today. The aim of this study is therefore, to assess the antimicrobial resistance profiles and multidrug resistance patterns of S. pneumoniae isolates from patients suspected for pneumococcal infections in Ethiopia. Methods: A hospital-based prospective study was conducted from 2018 to 2019 at Addis Ababa and Amhara region referral hospitals. Antimicrobial resistance tests were performed on 57 isolates of S. pneumoniae that were collected from pediatric and adult patients. Samples (cerebrospinal fluid, blood, sputum, eye discharge, ear discharge, pleural and peritoneal fluids) from all collection sites were initially cultured onto 5 % sheep blood agar plates and incubated overnight at 370C in 5% CO2 atmosphere. S. pneumoniae was identified and confirmed by typical colony morphology, alpha-hemolysis, Gram staining, optochin susceptibility and bile solubility test. Drug resistance testing was performed using E-test method according to recommendations of the Clinical and Laboratory Standards Institute.Results: Of the 57 isolates, 17.5% were fully resistant to penicillin. Corresponding value for both cefotaxime and ceftriaxone was 1.8%. Resistance rates to erythromycin, clindamycin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole were 59.6%, 17.5%, 38.6%, 17.5% and 24.6%, respectively. Multidrug resistance (MDR) was seen in 33.3% isolates. The most common pattern was co-resistance to penicillin, erythromycin, clindamycin and tetracycline.Conclusions: Most bacterial isolates were susceptible to Ceftriaxone and Cefotaxime. Penicillin has been used as a drug of choice for treating S. pneumoniae infection. However, antimicrobial resistance including multidrug resistance was observed to a number of commonly used antibiotics including penicillin. Hence, it is important to periodically monitor the antibiotic resistance patterns to choose empirical treatments for better management of pneumococcal infection.


2015 ◽  
Vol 35 (7) ◽  
pp. 763-765
Author(s):  
Arnaud Devresse ◽  
Benjamin Seront ◽  
Benoit Kabamba ◽  
Eric Goffin ◽  
Johann Morelle

2019 ◽  
Vol 25 (7) ◽  
pp. 412-419 ◽  
Author(s):  
Siwei Feng ◽  
Tingting Chen ◽  
Guihua Lei ◽  
Fengqing Hou ◽  
Jiali Jiang ◽  
...  

Streptococcus pneumoniae, a leading cause of invasive pneumococcal disease, is responsible for high mortality and morbidity worldwide. A previous study showed that the NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes are essential for caspase-1 activation and IL-1β production in the host response to S. pneumoniae infection. The function of NLRP3 in host innate immunity to S. pneumoniae was studied in vivo and in vitro. However, the role of AIM2 in host defence against S. pneumoniae remains unclear. Here, we show that AIM2-deficient (AIM2–/–) mice display increased susceptibility to intra-nasal infection with S. pneumoniae in comparison to wild type mice and that this susceptibility was associated with defective IL-1β production. Macrophages from AIM2–/– mice infected with S. pneumoniae showed impaired secretion of IL-1β as well as activation of the inflammasome, as determined by the oligomerisation of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 activation. Taken together, these results indicate that the AIM2 inflammasome is essential for caspase-1-dependent cytokine IL-1β production and eventual protection from pneumococcal infection in mice.


2012 ◽  
Vol 19 (8) ◽  
pp. 1131-1141 ◽  
Author(s):  
Michael W. Pride ◽  
Susanne M. Huijts ◽  
Kangjian Wu ◽  
Victor Souza ◽  
Sherry Passador ◽  
...  

ABSTRACTTo improve the clinical diagnosis of pneumococcal infection in bacteremic and nonbacteremic community-acquired pneumonia (CAP), a Luminex technology-based multiplexurinaryantigendetection (UAD) diagnostic assay was developed and validated. The UAD assay can simultaneously detect 13 different serotypes ofStreptococcus pneumoniaeby capturing serotype-specificS. pneumoniaepolysaccharides (PnPSs) secreted in human urine. Assay specificity is achieved by capturing the polysaccharides with serotype-specific monoclonal antibodies (MAbs) on spectrally unique microspheres. Positivity for each serotype was based on positivity cutoff values calculated from a standard curve run on each assay plate together with positive- and negative-control urine samples. The assay is highly specific, since significant signals are detected only when each PnPS was paired with its homologous MAb-coated microspheres. Validation experiments demonstrated excellent accuracy and precision. The UAD assay and corresponding positivity cutoff values were clinically validated by assessing 776 urine specimens obtained from patients with X-ray-confirmed CAP. The UAD assay demonstrated 97% sensitivity and 100% specificity using samples obtained from patients with bacteremic, blood culture-positive CAP. Importantly, the UAD assay identifiedStreptococcus pneumoniae(13 serotypes) in a proportion of individuals with nonbacteremic CAP, a patient population for which the pneumococcal etiology of CAP was previously difficult to assess. Therefore, the UAD assay provides a specific, noninvasive, sensitive, and reproducible tool to support vaccine efficacy as well as epidemiological evaluation of pneumococcal disease, including CAP, in adults.


Sign in / Sign up

Export Citation Format

Share Document