scholarly journals Transcriptome Sequencing and Comparative Analysis of Saccharina japonica (Laminariales, Phaeophyceae) under Blue Light Induction

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39704 ◽  
Author(s):  
Yunyan Deng ◽  
Jianting Yao ◽  
Xiuliang Wang ◽  
Hui Guo ◽  
Delin Duan
2016 ◽  
Vol 38 (10) ◽  
pp. 1781-1789 ◽  
Author(s):  
Minh Hien Hoang ◽  
Cuong Nguyen ◽  
Huy Quang Pham ◽  
Lam Van Nguyen ◽  
Le Hoang Duc ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Olumuyiwa Igbalajobi ◽  
Zhenzhong Yu ◽  
Reinhard Fischer

ABSTRACT The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA, lreA, and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA (clock-controlled gene in Neurospora crassa and light-induced gene in Aspergillus nidulans) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors. IMPORTANCE Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa, most light responses are triggered by blue light, whereas in A. nidulans, red light plays a dominant role. In Alternaria alternata, both blue and red light appear to be important. In A. alternata, photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling.


1996 ◽  
Vol 8 (12) ◽  
pp. 2245 ◽  
Author(s):  
Chung-soon Im ◽  
Gail L. Matters ◽  
Samuel I. Beale
Keyword(s):  

1991 ◽  
Vol 19 (24) ◽  
pp. 6883-6886 ◽  
Author(s):  
Frank-R. Lauter ◽  
Vincenzo E.A. Russo

2019 ◽  
Vol 20 (10) ◽  
pp. 2414 ◽  
Author(s):  
Hexiang Luan ◽  
Jianting Yao ◽  
Zhihang Chen ◽  
Delin Duan

Blue light (BL) plays an important role in regulation of the growth and development of aquatic plants and land plants. Aureochrome (AUREO), the recent BL photoreceptor identified in photosynthetic stramenopile algae, is involved in the photomorphogenesis and early development of Saccharina japonica porophytes (kelp). However the factors that interact with the SjAUREO under BL conditions specifically are not clear. Here in our study, three high quality cDNA libraries with CFU over 5 × 106 and a recombination rate of 100% were constructed respectively through white light (WL), BL and darkness (DK) treatments to the juvenile sporophytes. Based on the constructed cDNA libraries, the interactors of SjAUREO were screened and analyzed. There are eighty-four genes encoding the sixteen predicted proteins from the BL cDNA library, sixty-eight genes encoding eighteen predicted proteins from the DK cDNA library, and seventy-four genes encoding nineteen proteins from the WL cDNA library. All the predicted proteins are presumed to interact with SjAUREO when co-expressed with SjAUREO seperately. The 40S ribosomal protein S6 (RPS6), which only exists in the BL treated cDNA library except for two other libraries, and which is essential for cell proliferation and is involved in cell cycle progression, was selected for detailed analysis. We showed that its transcription was up-regulated by BL, and was highly transcribed in the basal blade (meristem region) of juvenile sporophytes but less in the distal part. Taken together, our results indicated that RPS6 was highly involved in BL-mediated kelp cellular division and photomorphogenesis by interacting with SjAUREO.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhanru Shao ◽  
Pengyan Zhang ◽  
Chang Lu ◽  
Shaoxuan Li ◽  
Zhihang Chen ◽  
...  

Abstract Background Alginate is an important cell wall component and mannitol is a soluble storage carbon substance in the brown seaweed Saccharina japonica. Their contents vary with kelp developmental periods and harvesting time. Alginate and mannitol regulatory networks and molecular mechanisms are largely unknown. Results With WGCNA and trend analysis of 20,940 known genes and 4264 new genes produced from transcriptome sequencing of 30 kelp samples from different stages and tissues, we deduced that ribosomal proteins, light harvesting complex proteins and “imm upregulated 3” gene family are closely associated with the meristematic growth and kelp maturity. Moreover, 134 and 6 genes directly involved in the alginate and mannitol metabolism were identified, respectively. Mannose-6-phosphate isomerase (MPI2), phosphomannomutase (PMM1), GDP-mannose 6-dehydrogenase (GMD3) and mannuronate C5-epimerase (MC5E70 and MC5E122) are closely related with the high content of alginate in the distal blade. Mannitol accumulation in the basal blade might be ascribed to high expression of mannitol-1-phosphate dehydrogenase (M1PDH1) and mannitol-1-phosphatase (M1Pase) (in biosynthesis direction) and low expression of mannitol-2-dehydrogenase (M2DH) and Fructokinase (FK) (in degradation direction). Oxidative phosphorylation and photosynthesis provide ATP and NADH for mannitol metabolism whereas glycosylated cycle and tricarboxylic acid (TCA) cycle produce GTP for alginate biosynthesis. RNA/protein synthesis and transportation might affect alginate complex polymerization and secretion processes. Cryptochrome (CRY-DASH), xanthophyll cycle, photosynthesis and carbon fixation influence the production of intermediate metabolite of fructose-6-phosphate, contributing to high content of mannitol in the basal blade. Conclusions The network of co-responsive DNA synthesis, repair and proteolysis are presumed to be involved in alginate polymerization and secretion, while upstream light-responsive reactions are important for mannitol accumulation in meristem of kelp. Our transcriptome analysis provides new insights into the transcriptional regulatory networks underlying the biosynthesis of alginate and mannitol during S. japonica developments.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740023
Author(s):  
Guo Jie ◽  
Junshan Ma ◽  
Rao Feng

A novel method to determine the junction temperature of GaN type blue light LED based on the spectral parameters is proposed. In this method, the relationships among LED junction temperature, centroid wavelength and FWHM are obtained in the lab, and then the junction temperature of operating LED of the same type can be derived from this relationship. A comparative analysis of the junction temperatures which are measured with the centroid wavelength-FWHM method and with the forward voltage method is performed. The standard deviation between these two methods is found to be about 2.3[Formula: see text]C. Therefore, the combination of centroid wavelength and FWHM can be used to determine the junction temperature of GaN-based blue LED.


Gene ◽  
2015 ◽  
Vol 556 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Fang Wei ◽  
Shiqiao Luo ◽  
Qiankun Zheng ◽  
Jian Qiu ◽  
Wenfeng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document