scholarly journals Coordination of the Arc Regulatory System and Pheromone-Mediated Positive Feedback in Controlling the Vibrio fischeri lux Operon

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49590 ◽  
Author(s):  
Alecia N. Septer ◽  
Eric V. Stabb
1998 ◽  
Vol 88 (5) ◽  
pp. 416-421 ◽  
Author(s):  
Jochen Bogs ◽  
Iris Bruchmüller ◽  
Claudia Erbar ◽  
Klaus Geider

To follow the movement of Erwinia amylovora in plant tissue without dissection, this bacterium was marked with either the lux operon from Vibrio fischeri or the gfp gene from the jellyfish Aequorea victoria, both carried on multicopy plasmids and expressed under the control of the lac promoter from Escherichia coli. Movement of the pathogen was visualized in leaves, stems, and roots of apple seedlings, and migration of E. amylovora was traced from inoculation sites in the stem to as far as the roots. Green fluorescent E. amylovora cells were observed in the xylem and later appeared to break out of the vessels into the intercellular spaces of the adjacent parenchyma. Inoculation in the intercostal region of leaves caused a zone of slow necrosis that finally resulted in bacterial invasion of the xylem vessels. Labeled bacteria could also be seen in association with the anchor sites of leaf hairs. Distortion of the epidermis adjacent to leaf hairs created openings that were observed by scanning electron microscopy. As the intercostal region, the bases of leaf hairs provided E. amylovora access to intact xylem vessels, which allowed further distribution of the pathogen in the host plant.


1990 ◽  
Vol 172 (12) ◽  
pp. 6797-6802 ◽  
Author(s):  
A Swartzman ◽  
S Kapoor ◽  
A F Graham ◽  
E A Meighen
Keyword(s):  

Author(s):  
Brian E. Moy ◽  
J. Seshu

Sulfate Transport Anti-Sigma antagonist domains (Pfam01740) are found in all branches of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent amino acid sequences. These domains are present as part of larger SLC26/SulP anion transporters, where the STAS domain is associated with transmembrane anchoring of the larger multidomain protein. Here, we focus on STAS Domain only Proteins (SDoPs) in eubacteria, initially described as part of the Bacillus subtilisRegulation of Sigma B (RSB) regulatory system. Since their description in B. subtilis, SDoPs have been described to be involved in the regulation of sigma factors, through partner-switching mechanisms in various bacteria such as: Mycobacterium. tuberculosis, Listeria. monocytogenes, Vibrio. fischeri, Bordetella bronchiseptica, among others. In addition to playing a canonical role in partner-switching with an anti-sigma factor to affect the availability of a sigma factor, several eubacterial SDoPs show additional regulatory roles compared to the original RSB system of B. subtilis. This is of great interest as these proteins are highly conserved, and often involved in altering gene expression in response to changes in environmental conditions. For many of the bacteria we will examine in this review, the ability to sense environmental changes and alter gene expression accordingly is critical for survival and colonization of susceptible hosts.


Microbiology ◽  
2006 ◽  
Vol 75 (4) ◽  
pp. 452-458 ◽  
Author(s):  
I. V. Manukhov ◽  
V. Yu. Kotova ◽  
G. B. Zavil’gel’sky

2007 ◽  
Vol 70 (6) ◽  
pp. 1386-1392 ◽  
Author(s):  
JENNIFER R. BRIGATI ◽  
STEVEN A. RIPP ◽  
COURTNEY M. JOHNSON ◽  
POLINA A. IAKOVA ◽  
PATRICIA JEGIER ◽  
...  

The rapid detection of pathogenic bacteria in food and water is vital for the prevention of foodborne illness. In this study, the lux reporter genes were used in a new bioassay that allows pathogen monitoring without multiple sample manipulations or the addition of exogenous substrate. A recombinant phage specific for Escherichia coli O157:H7 was constructed that, upon infection, catalyzes the synthesis of N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). This phage PP01 derivative carries the luxI gene from Vibrio fischeri under the control of the phage promoter PL. OHHL produced by infected E. coli O157:H7 induces bioluminescence in bioreporter cells carrying the V. fischeri lux operon. The ability of phage PP01-luxI to detect several strains of E. coli O157:H7 was confirmed in a 96-well plate assay. In this assay, luxCDABE bioreporter cells capable of detecting OHHL were mixed with phage PP01-luxI and E. coli O157:H7, and luminescence was monitored. Reporter phages induced light in bioreporter cells within 1 h when exposed to 104 CFU/ml of E. coli O157:H7 and were able to detect 10 CFU/ml in pure culture with a preincubation step (total detection time, 4 h). The detection method was also applied to contaminated apple juice and was able to detect 104 CFU/ml of E. coli O157:H7 in 2 h after a 6-h preincubation.


2002 ◽  
Vol 15 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Stevens M. Brumbley ◽  
Lars A. Petrasovits ◽  
Robert G. Birch ◽  
Paul W. J. Taylor

Conditions have been developed for genetic transformation and insertional mutagenesis in Leifsonia xyli subsp. xyli (Lxx), the causal organism of ratoon stunting disease (RSD), one of the most damaging and intractable diseases of sugarcane internationally. Transformation frequencies ranged from 1 to 10 colony forming units (CFU)/μg of plas-mid DNA using Clavibacter/Escherichia coli shuttle vectors pCG188, pDM302, and pDM306 and ranged from 50 to 500 CFU/μg using cosmid cloning vectors pLAFR3 and pLAFR5-km. The transformation/transposition frequency was 0 to 70 CFU/μg of DNA, using suicide vectors pUCD623 and pSUP2021 containing transposable elements Tn4431 and Tn5, respectively. It was necessary to grow Lxx in media containing 0.1% glycine for electroporation and to amplify large plasmids in a dam¯/dcm¯ E. coli strain and purify the DNA by anion exchange. To keep selection pressure at an optimum, the transformants were grown on nitrocellulose filters (0.2-μm pore size) on media containing the appropriate antibiotics. Transposon Tn4431 containing a promoterless lux operon from Vibrio fischeri and a tetra-cycline-resistance gene was introduced on the suicide vector pUCD623. All but 1% of the putative transposon mutants produce light, indicating transposition into functional Lxx genes. Southern blot analysis of these transformants indicates predominantly single transposon insertions at unique sites. The cosmid cloning vector pLAFR5-km was stably maintained in Lxx. The development of a transformation and transposon mutagenesis system opens the way for molecular analysis of pathogenicity determinants in Lxx.


2002 ◽  
Vol 30 (1) ◽  
pp. 221-243
Author(s):  
Luis Emilio Bruni

When dealing with biological communication and information, unifying concepts are necessary in order to couple the different “codes” that are being inductively “cracked” and defined at different emergent and “deemergent” levels of the biological hierarchy. In this paper I compare the type of biological information implied by genetic information with that implied in the concept of “quorum sensing” (which refers to a prokaryotic cell-to-cell communication system) in order to explore if such integration is being achieved. I use the Lux operon paradigm and the Vibrio fischeri – Euprymna scolopes symbiotic partnership to exemplify the emergence of informational contexts along the biological hierarchy (from molecules to ecologies). I suggest that the biosemiotic epistemological framework can play an integrative role to overcome the limits of dyadic mechanistic descriptions when relating the different emergent levels. I also emphasise that the realisation of biology as being a “science of sensing” and the new importance that is being ascribed to the “context” in experimental biology corroborate past claims of biosemioticians about a shift from a focus on information (as a material agent of causality) towards a focus on the world of signification.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 253-256 ◽  
Author(s):  
T. Yamagata ◽  
M. Ishii ◽  
M. Narita ◽  
G.-C. Huang ◽  
G. Endo

Bioluminescence sensor systems were developed for monitoring environmental mercury contamination. The biological mercury measurement sensor systems were constructed by DNA recombination technique. A bacterial mercury-resistant operon (mer operon) from Pseudomonas sp. K-6y4 and a bacterial bioluminescence operon (lux operon) from an ocean bacterium Vibrio fischeri were fused in a vector plasmid. The resulting recombinant plasmids were cloned in Escherichia coli cells. The bioluminescence sensor systems responded to mercury chloride of 0.1 nM to 100 nM. The mercury bioluminescence sensor developed in this study can be used for monitoring of the bio-affecting mercury instead of total mercury that is measured by conventional analytical equipment. The fundamental feature of the bioluminescence sensor system is attractive for use as a monitoring system for bio-affecting environmental mercury contamination.


Sign in / Sign up

Export Citation Format

Share Document