scholarly journals STAS Domain Only Proteins in Bacterial Gene Regulation

Author(s):  
Brian E. Moy ◽  
J. Seshu

Sulfate Transport Anti-Sigma antagonist domains (Pfam01740) are found in all branches of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent amino acid sequences. These domains are present as part of larger SLC26/SulP anion transporters, where the STAS domain is associated with transmembrane anchoring of the larger multidomain protein. Here, we focus on STAS Domain only Proteins (SDoPs) in eubacteria, initially described as part of the Bacillus subtilisRegulation of Sigma B (RSB) regulatory system. Since their description in B. subtilis, SDoPs have been described to be involved in the regulation of sigma factors, through partner-switching mechanisms in various bacteria such as: Mycobacterium. tuberculosis, Listeria. monocytogenes, Vibrio. fischeri, Bordetella bronchiseptica, among others. In addition to playing a canonical role in partner-switching with an anti-sigma factor to affect the availability of a sigma factor, several eubacterial SDoPs show additional regulatory roles compared to the original RSB system of B. subtilis. This is of great interest as these proteins are highly conserved, and often involved in altering gene expression in response to changes in environmental conditions. For many of the bacteria we will examine in this review, the ability to sense environmental changes and alter gene expression accordingly is critical for survival and colonization of susceptible hosts.

2009 ◽  
Vol 191 (8) ◽  
pp. 2541-2550 ◽  
Author(s):  
Archana Parashar ◽  
Kimberley R. Colvin ◽  
Dawn R. D. Bignell ◽  
Brenda K. Leskiw

ABSTRACT The similarity of BldG and the downstream coexpressed protein SCO3548 to anti-anti-sigma and anti-sigma factors, respectively, together with the phenotype of a bldG mutant, suggests that BldG and SCO3548 interact as part of a regulatory system to control both antibiotic production and morphological differentiation in Streptomyces coelicolor. A combination of bacterial two-hybrid, affinity purification, and far-Western analyses demonstrated that there was self-interaction of both BldG and SCO3548, as well as a direct interaction between the two proteins. Furthermore, a genetic complementation experiment demonstrated that SCO3548 antagonizes the function of BldG, similar to other anti-anti-sigma/anti-sigma factor pairs. It is therefore proposed that BldG and SCO3548 form a partner-switching pair that regulates the function of one or more sigma factors in S. coelicolor. The conservation of bldG and sco3548 in other streptomycetes demonstrates that this system is likely a key regulatory switch controlling developmental processes throughout the genus Streptomyces.


2016 ◽  
Vol 82 (15) ◽  
pp. 4456-4469 ◽  
Author(s):  
Claudia Guldimann ◽  
Kathryn J. Boor ◽  
Martin Wiedmann ◽  
Veronica Guariglia-Oropeza

ABSTRACTGram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σB. σBhas been characterized in a subset of Gram-positive bacteria, including the generaBacillus,Listeria, andStaphylococcus. Recent insight from next-generation-sequencing results indicates that σB-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σBto resilience inBacillus,Listeria, andStaphylococcusand illustrates recently described regulatory functions of σB.


2010 ◽  
Vol 192 (8) ◽  
pp. 2255-2265 ◽  
Author(s):  
Bénédicte Bastiat ◽  
Laurent Sauviac ◽  
Claude Bruand

ABSTRACT RpoE2 is an extracytoplasmic function (ECF) sigma factor involved in the general stress response of Sinorhizobium meliloti, the nitrogen-fixing symbiont of the legume plant alfalfa. RpoE2 orthologues are widely found among alphaproteobacteria, where they play various roles in stress resistance and/or host colonization. In this paper, we report a genetic and biochemical investigation of the mechanisms of signal transduction leading to S. meliloti RpoE2 activation in response to stress. We showed that RpoE2 activity is negatively controlled by two paralogous anti-sigma factors, RsiA1 (SMc01505) and RsiA2 (SMc04884), and that RpoE2 activation by stress requires two redundant paralogous PhyR-type response regulators, RsiB1 (SMc01504) and RsiB2 (SMc00794). RsiB1 and RsiB2 do not act at the level of rpoE2 transcription but instead interact with the anti-sigma factors, and we therefore propose that they act as anti-anti-sigma factors to relieve RpoE2 inhibition in response to stress. This model closely resembles a recently proposed model of activation of RpoE2-like sigma factors in Methylobacterium extorquens and Bradyrhizobium japonicum, but the existence of two pairs of anti- and anti-anti-sigma factors in S. meliloti adds an unexpected level of complexity, which may allow the regulatory system to integrate multiple stimuli.


2003 ◽  
Vol 185 (4) ◽  
pp. 1261-1265 ◽  
Author(s):  
Gyula Alan Rédly ◽  
Keith Poole

ABSTRACT A search of the pvd pyoverdine biosynthesis locus of Pseudomonas aeruginosa identified an open reading frame, PA2387, whose product exhibited a sequence similar to those of a number of so-called extracytoplasmic- function sigma factors responsible for siderophore-dependent expression of iron-siderophore receptors in Escherichia coli and Pseudomonas putida. Deletion of this gene, dubbed fpvI, compromised pyoverdine-dependent FpvA ferric pyoverdine receptor production and fpvA gene expression, while the cloned gene stimulated fpvA expression. A Fur-binding site was identified immediately upstream of fpvI, consistent with the observed iron-regulated expression of fpvI and fpvA.


2019 ◽  
Vol 201 (7) ◽  
Author(s):  
Richa Misra ◽  
Dilip Menon ◽  
Gunjan Arora ◽  
Richa Virmani ◽  
Mohita Gaur ◽  
...  

ABSTRACTBacterial alternative sigma factors are mostly regulated by a partner-switching mechanism. Regulation of the virulence-associated alternative sigma factor SigF ofMycobacterium tuberculosishas been an area of intrigue, with SigF having more predicted regulators than other sigma factors in this organism. Rv1364c is one such predicted regulator, the mechanism of which is confounded by the presence of both anti-sigma factor and anti-sigma factor antagonist functions in a single polypeptide. Using protein binding and phosphorylation assays, we demonstrate that the anti-sigma factor domain of Rv1364c mediates autophosphorylation of its antagonist domain and binds efficiently to SigF. Furthermore, we identified a direct role for the osmosensor serine/threonine kinase PknD in regulating the SigF-Rv1364c interaction, adding to the current understanding about the intersection of these discrete signaling networks. Phosphorylation of SigF also showed functional implications in its DNA binding ability, which may help in activation of the regulon. InM. tuberculosis, osmotic stress-dependent induction ofespA, a SigF target involved in maintaining cell wall integrity, is curtailed upon overexpression of Rv1364c, showing its role as an anti-SigF factor. Overexpression of Rv1364c led to induction of another target,pks6, involved in lipid metabolism. This induction was, however, curtailed in the presence of osmotic stress conditions, suggesting modulation of SigF target gene expression via Rv1364c. These data provide evidence that Rv1364c acts an independent SigF regulator that is sensitive to the osmosensory signal, mediating the cross talk of PknD with the SigF regulon.IMPORTANCEMycobacterium tuberculosis, capable of latently infecting the host and causing aggressive tissue damage during active tuberculosis, is endowed with a complex regulatory capacity built of several sigma factors, protein kinases, and phosphatases. These proteins regulate expression of genes that allow the bacteria to adapt to various host-derived stresses, like nutrient starvation, acidic pH, and hypoxia. The cross talk between these systems is not well understood. SigF is one such regulator of gene expression that helpsM. tuberculosisto adapt to stresses and imparts virulence. This work provides evidence for its inhibition by the multidomain regulator Rv1364c and activation by the kinase PknD. The coexistence of negative and positive regulators of SigF in pathogenic bacteria reveals an underlying requirement for tight control of virulence factor expression.


2001 ◽  
Vol 69 (11) ◽  
pp. 6951-6961 ◽  
Author(s):  
Amy E. Kirby ◽  
Daniel J. Metzger ◽  
Erin R. Murphy ◽  
Terry D. Connell

ABSTRACT Efficient utilization of heme as an iron (Fe) source byBordetella avium requires bhuR, an Fe-regulated gene which encodes an outer membrane heme receptor. Upstream of bhuR is a 507-bp open reading frame, hereby designated rhuI (for regulator of heme uptake), which codes for a 19-kDa polypeptide. Whereas the 19-kDa polypeptide had homology to a subfamily of alternative sigma factors known as the extracytoplasmic function (ECF) sigma factors, it was hypothesized thatrhuI encoded a potential in-trans regulator of the heme receptor gene in trans. Support for the model was strengthened by the identification of nucleotide sequences common to ECF sigma-dependent promoters in the region immediately upstream of bhuR. Experimental evidence for the regulatory activities of rhuI was first revealed by recombinant experiments in which overproduction of rhuIwas correlated with a dramatically increased expression of BhuR. A putative rhuI-dependent bhuR promoter was identified in the 199-bp region located proximal tobhuR. When a transcriptional fusion of the 199-bp region and a promoterless lacZ gene was introduced intoEscherichia coli, promoter activity was evident, but only when rhuI was coexpressed in the cell. Sigma competition experiments in E. colidemonstrated that rhuI conferred biological properties on the cell that were consistent with RhuI having sigma factor activity. Heme, hemoglobin, and several other heme-containing proteins were shown to be the extracellular inducers of therhuI-dependent regulatory system. Fur titration assays indicated that expression of rhuI was probably Fur dependent.


2005 ◽  
Vol 73 (8) ◽  
pp. 4834-4845 ◽  
Author(s):  
Ying Du ◽  
Jonathan Lenz ◽  
Cindy Grove Arvidson

ABSTRACT Like many bacterial pathogens, Neisseria gonorrhoeae must adapt to environmental changes in order to successfully colonize and proliferate in a new host. Modulation of gene expression in response to environmental signals is an efficient mechanism used by bacteria to achieve this goal. Using DNA microarrays and a tissue culture model for gonococcal infection, we examined global changes in gene expression in N. gonorrhoeae in response to adherence to host cells. Among those genes induced upon adherence to human epithelial cells in culture was rpoH, which encodes a homolog of the heat shock sigma factor, σ32 (RpoH), as well as genes of the RpoH regulon, groEL and groES. Attempts to construct an rpoH null mutant in N. gonorrhoeae were unsuccessful, suggesting that RpoH is essential for viability of N. gonorrhoeae. The extracytoplasmic sigma factor, RpoE (σE), while known to regulate rpoH in other bacteria, was found not to be necessary for the up-regulation of rpoH in gonococci upon adherence to host cells. To examine the role of RpoH in host cell interactions, an N. gonorrhoeae strain conditionally expressing rpoH was constructed. The results of our experiments showed that while induction of rpoH expression is not necessary for adherence of gonococci to epithelial cells, it is important for the subsequent invasion step, as gonococci depleted for rpoH invade cells two- to threefold less efficiently than a wild-type strain. Taken together, these results indicate that σ32, but not σE, is important for the response of gonococci in the initial steps of an infection.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Raheleh Sheibani-Tezerji ◽  
Thomas Rattei ◽  
Angela Sessitsch ◽  
Friederike Trognitz ◽  
Birgit Mitter

ABSTRACT It is widely accepted that bacterial endophytes actively colonize plants, interact with their host, and frequently show beneficial effects on plant growth and health. However, the mechanisms of plant-endophyte communication and bacterial adaption to the plant environment are still poorly understood. Here, whole-transcriptome sequencing of B. phytofirmans PsJN colonizing potato (Solanum tuberosum L.) plants was used to analyze in planta gene activity and the response of strain PsJN to plant stress. The transcriptome of PsJN colonizing in vitro potato plants showed a broad array of functionalities encoded in the genome of strain PsJN. Transcripts upregulated in response to plant drought stress were mainly involved in transcriptional regulation, cellular homeostasis, and the detoxification of reactive oxygen species, indicating an oxidative stress response in PsJN. Genes with modulated expression included genes for extracytoplasmatic function (ECF) group IV sigma factors. These cell surface signaling elements allow bacteria to sense changing environmental conditions and to adjust their metabolism accordingly. TaqMan quantitative PCR (TaqMan-qPCR) was performed to identify ECF sigma factors in PsJN that were activated in response to plant stress. Six ECF sigma factor genes were expressed in PsJN colonizing potato plants. The expression of one ECF sigma factor was upregulated whereas that of another one was downregulated in a plant genotype-specific manner when the plants were stressed. Collectively, our study results indicate that endophytic B. phytofirmans PsJN cells are active inside plants. Moreover, the activity of strain PsJN is affected by plant drought stress; it senses plant stress signals and adjusts its gene expression accordingly. IMPORTANCE In recent years, plant growth-promoting endophytes have received steadily growing interest as an inexpensive alternative to resource-consuming agrochemicals in sustainable agriculture. Even though promising effects are recurrently observed under controlled conditions, these are rarely reproducible in the field or show undesirably strong variations. Obviously, a better understanding of endophyte activities in plants and the influence of plant physiology on these activities is needed to develop more-successful application strategies. So far, research has focused mainly on analyzing the plant response to bacterial inoculants. This prompted us to study the gene expression of the endophyte Burkholderia phytofirmans PsJN in potato plants. We found that endophytic PsJN cells express a wide array of genes and pathways, pointing to high metabolic activity inside plants. Moreover, the strain senses changes in the plant physiology due to plant stress and adjusts its gene expression pattern to cope with and adapt to the altered conditions.


2004 ◽  
Vol 186 (12) ◽  
pp. 3928-3937 ◽  
Author(s):  
Tracy L. Dalton ◽  
June R. Scott

ABSTRACT The gram-positive human pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes diseases ranging from mild and often self-limiting infections of the skin or throat to invasive and life-threatening illnesses. To cause such diverse types of disease, the GAS must be able to sense adverse environments and regulate its gene expression accordingly. The CovR/S two-component signal transduction regulatory system in GAS represses about 15% of the GAS genome, including many genes involved in virulence, in response to the environment. We report that CovR is still able to repress transcription from several promoters in the absence of the putative histidine kinase sensor for this system, CovS. We also show that a phosphorylation site mutant (D53A) of CovR is unable to repress gene expression. In addition, we report that a strain with a nonpolar mutation in CovS does not grow at a low pH, elevated temperature, or high osmolarity. The stress-related phenotypes of the CovS mutant were complemented by expression of covS from a plasmid. Selection for growth of a CovS mutant under stress conditions resulted in isolation of second-site mutations that inactivated covR, indicating that CovR and CovS act in the same pathway. Also, at 40°C in the wild-type strain, CovR appeared to be less active on the promoter tested, which is consistent with the hypothesis that it was partially inactivated by CovS. We suggest that under mild stress conditions, CovS inactivates CovR, either directly or indirectly, and that this inactivation relieves repression of many GAS genes, including the genes needed for growth of GAS under stress conditions and some genes that are necessary for virulence. Growth of many gram-positive bacteria under multiple-stress conditions requires alteration of promoter recognition produced by RNA polymerase association with the general stress response sigma factor, σB. We provide evidence that for GAS, which lacks a sigB ortholog, growth under stress conditions requires the CovR/S two-component regulatory system instead. This two-component system in GAS thus appears to perform a function for which other gram-positive bacteria utilize an alternative sigma factor.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document