scholarly journals Rapid Copper Acquisition by Developing Murine Mesothelioma: Decreasing Bioavailable Copper Slows Tumor Growth, Normalizes Vessels and Promotes T Cell Infiltration

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e73684 ◽  
Author(s):  
Andrew Crowe ◽  
Connie Jackaman ◽  
Katie M. Beddoes ◽  
Belinda Ricciardo ◽  
Delia J. Nelson
Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Man-Chin Chen ◽  
Christian Ronquillo Pangilinan ◽  
Che-Hsin Lee

Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.


2020 ◽  
Author(s):  
Tiesuo Zhao ◽  
Yongxi Zhang ◽  
Wenyan Fan ◽  
Jing Guo ◽  
Weiwei Ren ◽  
...  

Abstract BackgroundColon cancer is one of the most common malignant tumors in the digestive system. Although oxaliplatin, a chemotherapy drug, has been clinically used to treat colon cancer, its therapeutic effect is unsatisfactory. MethodsIn the present work, it has been proved that indoleamine dioxygenase 2,3 (IDO), an immune checkpoint, is a result of tolerance to chemotherapy. Herein, the anti-tumor effect of treatment with oxaliplatin and D-MT, an IDO inhibitor, on the mice was observed by recording the tumor growth and survival of the mice, and detecting T cell infiltration in tumor tissues and the ratios of immune cells in the spleen by corresponding methods. ResultsWe found that the combination of oxaliplatin and D-MT significantly inhibited tumor growth, prolonged the survival of tumor-bearing mice, increased the cell apoptosis. More importantly, the combination treatment increased the ratios of CD4+ T, CD8+ T and NK cells from the spleen in tumor-bearing mice, and prompted T cell infiltration in tumor tissues. ConclusionThis study provided a new therapeutic strategy for colon cancer treatment in the clinic, especially for patients with oxaliplatin resistance.


2020 ◽  
Vol 8 (2) ◽  
pp. e001673
Author(s):  
Brittany L Bunch ◽  
Jennifer Morse ◽  
Sarah Asby ◽  
Jamie Blauvelt ◽  
Ahmet M Aydin ◽  
...  

BackgroundThe therapeutic armamentarium of bladder cancer has been recently enriched with the introduction of new therapies including immune checkpoint inhibitors, receptor tyrosine kinase inhibitors and antibody drug conjugates, however treatment responses and duration of responses are still less than expected. Adoptive cellular therapy (ACT) using tumor-infiltrating lymphocytes (TILs) has potential to treat bladder cancer, as previously demonstrated by successful expansion of tumor reactive T cells from human bladder tumors.MethodsA model system using OT-I T cells and an ovalbumin expressing MB49 tumor cell line (MB49OVA) was developed to study ACT in bladder cancer. Systemic ACT-treated mice were given T cells intravenously after lymphodepleting chemotherapy and followed by interleukin (IL)-2 administration. Intravesical ACT treated mice were given T cells directly into the bladder, without chemotherapy or IL-2. TILs were isolated from MB49 orthotopic tumors and expanded ex vivo in IL-2. Immune cell infiltrates were analyzed by flow cytometry. T cell infiltration was studied using a CXCR3 blocking antibody.ResultsSystemic ACT-treated mice had a decrease in tumor growth, increase in T cell infiltration and long-term immune protection compared with control-treated mice. OT-I T cells delivered intravesically were able to control tumor growth without lymphodepleting chemotherapy or IL-2 in MB49OVA orthotopic tumors. Intravesical delivery of TIL expanded from MB49 tumors was also able to decrease tumor growth in mice with MB49 orthotopic tumors. Blocking CXCR3 on OT-I T cells prior to intravesical delivery decreased T cell infiltration into the tumor and prevented the control of tumor growth.ConclusionsThis study demonstrates how TIL therapy can be used in treating different stages of bladder cancer.


2019 ◽  
Vol 10 ◽  
Author(s):  
Esma Karkeni ◽  
Stéphanie O. Morin ◽  
Berna Bou Tayeh ◽  
Armelle Goubard ◽  
Emmanuelle Josselin ◽  
...  

2017 ◽  
Vol 7 (3) ◽  
pp. e1404213 ◽  
Author(s):  
Nada Chaoul ◽  
Alexandre Tang ◽  
Belinda Desrues ◽  
Marine Oberkampf ◽  
Catherine Fayolle ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chuan Wang ◽  
Nur Syafinaz Zainal ◽  
San Jiun Chai ◽  
James Dickie ◽  
Chai Phei Gan ◽  
...  

HPV-independent head and neck squamous cell carcinoma (HNSCC) is a common cancer globally. The overall response rate to anti-PD1 checkpoint inhibitors (CPIs) in HNSCC is ~16%. One major factor influencing the effectiveness of CPI is the level of tumor infiltrating T cells (TILs). Converting TILlow tumors to TILhigh tumors is thus critical to improve clinical outcome. Here we describe a novel DNA vaccines to facilitate the T-cell infiltration and control tumor growth. We evaluated the expression of target antigens and their respective immunogenicity in HNSCC patients. The efficacy of DNA vaccines targeting two novel antigens were evaluated with or without CPI using a syngeneic model. Most HNSCC patients (43/44) co-expressed MAGED4B and FJX1 and their respective tetramer-specific T cells were in the range of 0.06-0.12%. In a preclinical model, antigen-specific T cells were induced by DNA vaccines and increased T cell infiltration into the tumor, but not MDSC or regulatory T cells. The vaccines inhibited tumor growth and improved the outcome alone and upon combination with anti-PD1 and resulted in tumor clearance in approximately 75% of mice. Pre-existence of MAGED4B and FJX1-reactive T cells in HNSCC patients suggests that these widely expressed antigens are highly immunogenic and could be further expanded by vaccination. The DNA vaccines targeting these antigens induced robust T cell responses and with the anti-PD1 antibody conferring excellent tumor control. This opens up an opportunity for combination immunotherapy that might benefit a wider population of HNSCC patients in an antigen-specific manner.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A601-A601
Author(s):  
Katherine Kirwin ◽  
Su Chul Jang ◽  
Christine Sia ◽  
Kevin Dooley ◽  
Tong Zi ◽  
...  

BackgroundEngineered exosomes are emerging as a novel therapeutic modality for cancer immunotherapy. Leveraging cell type specific delivery, tumor restricted pharmacology and compartmental dosing, exosome-based immunotherapy can elicit a tumor specific immune response that may not be achievable with other traditional drugging modalities. Pre-clinical studies have shown that exosomes loaded with a STING agonist (exoSTINGTM) or engineered to express the cytokine interleukin-12 (exoIL-12TM) can substantially improve potency and selectivity resulting in improved therapeutic window [1,2]. Both exoSTING and exoIL-12 are currently in clinical trials in cancer patients. Utilizing a combination strategy involving exoSTING and exoIL-12, we demonstrate the development of potent systemic anti-tumor responses in both injected and non-injected tumors.Methods exoSTING exosomes are engineered to overexpress PTGFRN, an abundant exosome surface protein, and loaded ex vivo with a proprietary STING agonist. exoIL-12 exosomes are engineered to overexpress functional IL-12 attached via fusion to PTGFRN. In these studies, exoSTING and exoIL-12 were dosed intratumorally into one flank tumor into mice bearing dual flank subcutaneous MC38 or B16F10 tumors, or B16F10 single flank subcutaneous tumors with B16F10 lung metastases. T-cell infiltration in the non-injected tumor was monitored by histopathology.ResultsIn the checkpoint therapy refractory B16F10 melanoma dual flank tumor model, exoSTING/exoIL-12 combination provided 93% and 78% tumor growth inhibition (TGI) in both the injected and non-injected tumors, respectively, whereas monotherapy of exoSTING or exoIL-12 provided modest anti-tumor activity (44% and 48% TGI) in the non-injected tumors, respectively. In a MC38 subcutaneous CRC model, the addition of anti-PD-1 checkpoint inhibitor further enhanced anti-tumor activity with 100% TGI (7/7 CR) in injected and non-injected tumors. The tumor free animals were refractory to tumor re-challenge demonstrating immunological memory. A dosing schedule optimization experiment showed that same day dosing of exoSTING and exoIL-12 significantly inhibited the tumor growth in the non-injected tumors. In a lung metastasis model, the triple combination also showed potent anti-tumor effect in decreasing distal lung metastases when dosed intratumorally into the subcutaneous tumors. Subsequent imaging and histology studies demonstrated enhanced T cell infiltration in the non-injected subcutaneous tumor with the combination therapy.ConclusionsBy combining both exosome immunotherapies with a checkpoint blockade, we are able to elicit systemic anti-tumor immune immunity in both injected and non-injected tumors.ReferencesJang SC, Economides KD, Moniz RJ, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4(1):497.Lewis ND, Sia CL, Kirwin K, et al. Exosome surface display of IL12 results in tumor-retained pharmacology with superior potency and limited systemic exposure compared with recombinant IL12. Mol Cancer Ther. 2020;20(3):523-534.Ethics ApprovalAll animals were maintained and treated at the animal care facility of Codiak Biosciences in accordance with the regulations and guidelines of the Institutional Animal Care and Use Committee (CB2020-001).


Sign in / Sign up

Export Citation Format

Share Document