scholarly journals The 3' Untranslated Region of the Cyclin B mRNA Is Not Sufficient to Enhance the Synthesis of Cyclin B during a Mitotic Block in Human Cells

PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74379 ◽  
Author(s):  
Dominik Schnerch ◽  
Marie Follo ◽  
Julia Felthaus ◽  
Monika Engelhardt ◽  
Ralph Wäsch
2007 ◽  
Vol 25 (6) ◽  
pp. 839-850 ◽  
Author(s):  
Stéphane Larochelle ◽  
Karl A. Merrick ◽  
Marie-Emilie Terret ◽  
Lara Wohlbold ◽  
Nora M. Barboza ◽  
...  

Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 989-997 ◽  
Author(s):  
B. Dalby ◽  
D.M. Glover

We have characterised forms of the Drosophila cyclin B transcript that differ as a result of a splicing event which removes a nucleotide segment from the 3′ untranslated region. In oogenesis, both cyclin A RNA and a shorter form of the cyclin B transcript are seen in the cells of the germarium that are undergoing mitosis. The shorter cyclin B transcript alone is then detectable in the presumptive oocyte until stages 7–8 of oogenesis. Both cyclin A RNA and a longer form of the cyclin B RNA are then synthesised in the nurse cells during stages 9–11, to be deposited in the oocyte during stages 11–12. These transcripts become evenly distributed throughout the oocyte cytoplasm but, in addition, those of cyclin B become concentrated at the posterior pole. Examination of the distributions of RNAs transcribed from chimeric cyclin genes indicates that sequences in the 3′ untranslated region of the larger cyclin B RNA are required both for it to become concentrated at the posterior pole and to direct those transcripts in the body of the syncytial embryo to their peri-nuclear localisation. These sequences are disrupted by the splicing event which generates smaller cyclin B transcripts.


1996 ◽  
Vol 317 (3) ◽  
pp. 633-641 ◽  
Author(s):  
Stephen A. OSMANI ◽  
Xiang S. YE

Great progress has recently been made in our understanding of the regulation of the eukaryotic cell cycle, and the central role of cyclin-dependent kinases is now clear. In Aspergillus nidulans it has been established that a second class of cell-cycle-regulated protein kinases, typified by NIMA (encoded by the nimA gene), is also required for cell cycle progression into mitosis. Indeed, both p34cdc2/cyclin B and NIMA have to be correctly activated before mitosis can be initiated in this species, and p34cdc2/cyclin B plays a role in the mitosis-specific activation of NIMA. In addition, both kinases have to be proteolytically destroyed before mitosis can be completed. NIMA-related kinases may also regulate the cell cycle in other eukaryotes, as expression of NIMA can promote mitotic events in yeast, frog or human cells. Moreover, dominant-negative versions of NIMA can adversely affect the progression of human cells into mitosis, as they do in A. nidulans. The ability of NIMA to influence mitotic regulation in human and frog cells strongly suggests the existence of a NIMA pathway of mitotic regulation in higher eukaryotes. A growing number of NIMA-related kinases have been isolated from organisms ranging from fungi to humans, and some of these kinases are also cell-cycle-regulated. How NIMA-related kinases and cyclin-dependent kinases act in concert to promote cell cycle transitions is just beginning to be understood. This understanding is the key to a full knowledge of cell cycle regulation.


2000 ◽  
Vol 151 (4) ◽  
pp. 749-762 ◽  
Author(s):  
Izabela Sumara ◽  
Elisabeth Vorlaufer ◽  
Christian Gieffers ◽  
Beate H. Peters ◽  
Jan-Michael Peters

In eukaryotes, sister chromatids remain connected from the time of their synthesis until they are separated in anaphase. This cohesion depends on a complex of proteins called cohesins. In budding yeast, the anaphase-promoting complex (APC) pathway initiates anaphase by removing cohesins from chromosomes. In vertebrates, cohesins dissociate from chromosomes already in prophase. To study their mitotic regulation we have purified two 14S cohesin complexes from human cells. Both complexes contain SMC1, SMC3, SCC1, and either one of the yeast Scc3p orthologs SA1 and SA2. SA1 is also a subunit of 14S cohesin in Xenopus. These complexes interact with PDS5, a protein whose fungal orthologs have been implicated in chromosome cohesion, condensation, and recombination. The bulk of SA1- and SA2-containing complexes and PDS5 are chromatin-associated until they become soluble from prophase to telophase. Reconstitution of this process in mitotic Xenopus extracts shows that cohesin dissociation does neither depend on cyclin B proteolysis nor on the presence of the APC. Cohesins can also dissociate from chromatin in the absence of cyclin-dependent kinase 1 activity. These results suggest that vertebrate cohesins are regulated by a novel prophase pathway which is distinct from the APC pathway that controls cohesins in yeast.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1332-1332
Author(s):  
Dominik Schnerch ◽  
Julia Felthaus ◽  
Monika Engelhardt ◽  
Ralph Wäsch

Abstract Abstract 1332 Acute myeloid leukemia (AML) is known to respond only moderately to antimitotic therapy while acute lymphoblastic leukemias can be efficiently targeted using spindle-disrupting agents. The underlying molecular cause for this clinical phenomenon is unknown. Recent evidence suggests that response to antimitotic therapy substantially depends on the stability of the critical mitotic regulator cyclin B. The ability to keep cyclin B expression levels stable during a mitotic block is associated with a good response leading to cell death in mitosis. At the metaphase to anaphase transition of an unperturbed cell division, cyclin B is targeted for degradation by the anaphase-promoting complex/cyclosome (APC/C) to trigger chromosome separation. The spindle assembly checkpoint (SAC) is a surveillance mechanism to ensure that APC/C-mediated ubiquitylation is restricted to cells that show proper attachment of all chromosomes to a functional mitotic spindle. In case of spindle disruption or unattached chromosomes, the spindle checkpoint stays active which leads to interference with APC/C-dependent proteolysis of cyclin B blocking cells in prometaphase until every chromosome is attached to the mitotic spindle. We recently developed a cell line-based reporter system which allows monitoring of cyclin B degradation under various conditions (Schnerch et al. Cell Cycle 2012). Here, we identified a pattern of slow degradation of cyclin B which continues through a mitotic block in case of chromosomal misalignment in unperturbed cell cycles. Remarkably, we also found prolonged slow degradation to trigger aberrant exit from mitosis in such cells giving rise to tetraploid cells. Therefore, a reduction in slow degradation appears as a promising rationale to foster a mitotic arrest and enhance cell death in mitosis during antimitotic therapy by preventing such mitotic slippage. We exposed our reporter cells to low concentrations of proteasome inhibitor during a spindle poison induced mitotic block to assess whether proteasome inhibition is capable of modulating slow degradation. Importantly, very low doses of proteasome inhibitor were sufficient to reduced the extent of cyclin B slow degradation during the mitotic block. Moreover, we demonstrate that low doses of proteasome inhibitor render the AML cell line Kasumi-1 responsive to low, non-disruptive concentrations of spindle poison (nocodazole and vincristine) leading to remarkable increases in the G2M-fraction. To the best of our knowledge there is no evidence so far that low doses of proteasome inhibitor exert antimitotic effects by interference with protein degradation during mitosis. Importantly, concentration of bortezomib of 1–2ng/ml (such as found in the serum of patients for up to 72h following administration of 1.3mg/m2 bortezomib subcutaneously) were found to exert synergistic effects with antimitotic therapy. Increases in the percentage of G2M cells by 38% were observed in Kasumi-1 cells for the combination of vincristine and bortezomib. Based on these findings, we currently apply our system to probe combinations of proteasome inhibitor with modern tailored therapies that exert their antimitotic effects by activation of the SAC, such as inhibitors of the motor protein Eg5 or of the mitotic kinases Polo-like kinase 1 (Plk1) or Aurora A and B. Using our cell line-based reporter system, we provide evidence in the in vitro setting that modulating slow degradation during antimitotic therapy by proteasome inhibition is a promising rationale to enhance the efficacy of antimitotic drugs. Drug concentrations used are based on published pharmacokinetics in humans and suggest feasibility of the drug combination in vivo. Our approach of targeted drug combinations may provide highly efficient treatment alternatives for patients that are not eligible for induction treatment. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Rosa Della Monica ◽  
Roberta Visconti ◽  
Nando Cervone ◽  
Angela Flavia Serpico ◽  
Domenico Grieco

During cell division, progression through mitosis is driven by a protein phosphorylation wave. This wave namely depends on an activation-inactivation cycle of cyclin B-dependent kinase (Cdk) 1 while activities of major protein phosphatases, like PP1 and PP2A, appear directly or indirectly repressed by Cdk1. However, how Cdk1 inactivation is coordinated with reactivation of major phosphatases at mitosis exit still lacks substantial knowledge. We show here that activation of PP2A-B55, a major mitosis exit phosphatase, required the phosphatase Fcp1 downstream Cdk1 inactivation in human cells. During mitosis exit, Fcp1 bound Greatwall (Gwl), a Cdk1-stimulated kinase that phosphorylates Ensa/ARPP19 and converts these proteins into potent PP2A-B55 inhibitors during mitosis onset, and dephosphorylated it at Cdk1 phosphorylation sites. Fcp1-catalyzed dephosphorylation drastically reduced Gwl kinase activity towards Ensa/ARPP19 promoting PP2A-B55 activation. Thus, Fcp1 coordinates Cdk1 and Gwl inactivation to derepress PP2A-B55, generating a dephosphorylation switch that drives mitosis progression.


2020 ◽  
Vol 101 (11) ◽  
pp. 1145-1155
Author(s):  
Min Wang ◽  
Liuyao Zhu ◽  
Jun Fan ◽  
Jingjing Yan ◽  
Ying Dun ◽  
...  

The species Enterovirus A (EV-A) consists of two conventional clusters and one unconventional cluster. At present, sequence analysis shows no evidence of recombination between conventional and unconventional EV-A types. However, the factors underlying this genetic barrier are unclear. Here, we systematically dissected the genome components linked to these peculiar phenomena, using the viral reverse genetic tools. We reported that viral capsids of the unconventional EV-A types expressed poorly in human cells. The trans-encapsidation outputs across conventional and unconventional EV-A types were also with low efficiency. However, replicons of conventional types bearing exchanged 5′-untranslated region (UTR) or non-structural regions from the unconventional types were replication-competent. Furthermore, we created a viable recombinant EVA71 (conventional type) with its P3 region replaced by that from EVA89 (unconventional type). Thus, our data for the first time reveal the potential for fertile genetic exchanges between conventional and unconventional EV-A types. It also discloses that the mysterious recombination barriers may lie in uncoordinated capsid expression and particle assembly by different EV-A clusters.


Sign in / Sign up

Export Citation Format

Share Document