scholarly journals 3′ non-translated sequences in Drosophila cyclin B transcripts direct posterior pole accumulation late in oogenesis and peri-nuclear association in syncytial embryos

Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 989-997 ◽  
Author(s):  
B. Dalby ◽  
D.M. Glover

We have characterised forms of the Drosophila cyclin B transcript that differ as a result of a splicing event which removes a nucleotide segment from the 3′ untranslated region. In oogenesis, both cyclin A RNA and a shorter form of the cyclin B transcript are seen in the cells of the germarium that are undergoing mitosis. The shorter cyclin B transcript alone is then detectable in the presumptive oocyte until stages 7–8 of oogenesis. Both cyclin A RNA and a longer form of the cyclin B RNA are then synthesised in the nurse cells during stages 9–11, to be deposited in the oocyte during stages 11–12. These transcripts become evenly distributed throughout the oocyte cytoplasm but, in addition, those of cyclin B become concentrated at the posterior pole. Examination of the distributions of RNAs transcribed from chimeric cyclin genes indicates that sequences in the 3′ untranslated region of the larger cyclin B RNA are required both for it to become concentrated at the posterior pole and to direct those transcripts in the body of the syncytial embryo to their peri-nuclear localisation. These sequences are disrupted by the splicing event which generates smaller cyclin B transcripts.

Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 169-178 ◽  
Author(s):  
J. Kim-Ha ◽  
P.J. Webster ◽  
J.L. Smith ◽  
P.M. Macdonald

Pattern formation in the early development of many organisms relies on localized cytoplasmic proteins, which can be prelocalized as mRNAs. The Drosophila oskar gene, required both for posterior body patterning and germ cell determination, encodes one such mRNA. Localization of oskar mRNA is an elaborate process involving movement of the transcript first into the oocyte from adjacent interconnected nurse cells and then across the length of the oocyte to its posterior pole. We have mapped RNA regulatory elements that direct this localization. Using a hybrid lacZ/oskar mRNA, we identify several elements within the oskar 3′ untranslated region that affect different steps in the process: the early movement into the oocyte, accumulation at the anterior margin of the oocyte and finally localization to the posterior pole. This use of multiple cis-acting elements suggests that localization may be orchestrated in a combinatorial fashion, thereby allowing localized mRNAs with ultimately different destinations to employ common mechanisms for shared intermediate steps.


1986 ◽  
Vol 81 (1) ◽  
pp. 189-206 ◽  
Author(s):  
J. Bohrmann ◽  
A. Dorn ◽  
K. Sander ◽  
H. Gutzeit

We determined the extracellular electrical current pattern around Drosophila follicles at different developmental stages (7–14) with a vibrating probe. At most stages a characteristic pattern can be recognized: current leaves near the oocyte end of the follicle and enters at the nurse cells. Only at late vitellogenic stages was an inward-directed current located at the posterior pole of many follicles. Most striking was the observed heterogeneity both in current pattern and in current density between follicles of the same stage. Different media (changed osmolarity or pH, addition of cytoskeletal inhibitors or juvenile hormone) were tested for their effects on extrafollicular currents. The current density was consistently influenced by the osmolarity of the medium but not by the other parameters tested. Denuded nurse cells (follicular epithelium locally stripped off) show current influx, while an accidentally denuded oocyte produced no current. Our results show that individual follicles may be electrophysiologically different, though their uniform differentiation during vitellogenesis does not reflect such heterogeneity.


1998 ◽  
Vol 111 (12) ◽  
pp. 1751-1757 ◽  
Author(s):  
A. Abrieu ◽  
T. Brassac ◽  
S. Galas ◽  
D. Fisher ◽  
J.C. Labbe ◽  
...  

We have investigated whether Plx1, a kinase recently shown to phosphorylate cdc25c in vitro, is required for activation of cdc25c at the G2/M-phase transition of the cell cycle in Xenopus. Using immunodepletion or the mere addition of an antibody against the C terminus of Plx1, which suppressed its activation (not its activity) at G2/M, we show that Plx1 activity is required for activation of cyclin B-cdc2 kinase in both interphase egg extracts receiving recombinant cyclin B, and cycling extracts that spontaneously oscillate between interphase and mitosis. Furthermore, a positive feedback loop allows cyclin B-cdc2 kinase to activate Plx1 at the G2/M-phase transition. In contrast, activation of cyclin A-cdc2 kinase does not require Plx1 activity, and cyclin A-cdc2 kinase fails to activate Plx1 and its consequence, cdc25c activation in cycling extracts.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1129-1138 ◽  
Author(s):  
Y.S. Lie ◽  
P.M. Macdonald

The product of the oskar gene directs posterior patterning in the Drosophila oocyte, where it must be deployed specifically at the posterior pole. Proper expression relies on the coordinated localization and translational control of the oskar mRNA. Translational repression prior to localization of the transcript is mediated, in part, by the Bruno protein, which binds to discrete sites in the 3′ untranslated region of the oskar mRNA. To begin to understand how Bruno acts in translational repression, we performed a yeast two-hybrid screen to identify Bruno-interacting proteins. One interactor, described here, is the product of the apontic gene. Coimmunoprecipitation experiments lend biochemical support to the idea that Bruno and Apontic proteins physically interact in Drosophila. Genetic experiments using mutants defective in apontic and bruno reveal a functional interaction between these genes. Given this interaction, Apontic is likely to act together with Bruno in translational repression of oskar mRNA. Interestingly, Apontic, like Bruno, is an RNA-binding protein and specifically binds certain regions of the oskar mRNA 3′ untranslated region.


2019 ◽  
Vol 218 (11) ◽  
pp. 3597-3611 ◽  
Author(s):  
Daisaku Hiraoka ◽  
Enako Hosoda ◽  
Kazuyoshi Chiba ◽  
Takeo Kishimoto

The kinase cyclin B–Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B–Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1 and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A–Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B–Cdk1 activation, cyclin A–Cdk1 is nonessential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B–Cdk1 activation in starfish oocytes. Upon hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gβγ-PI3K pathway and an unidentified pathway downstream of Gβγ, called the atypical Gβγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.


1991 ◽  
Vol 10 (13) ◽  
pp. 4311-4320 ◽  
Author(s):  
F.C. Luca ◽  
E.K. Shibuya ◽  
C.E. Dohrmann ◽  
J.V. Ruderman
Keyword(s):  
Cyclin A ◽  
Cyclin B ◽  

2020 ◽  
Vol 39 (11) ◽  
Author(s):  
Nadia Hégarat ◽  
Adrijana Crncec ◽  
Maria F Suarez Peredo Rodriguez ◽  
Fabio Echegaray Iturra ◽  
Yan Gu ◽  
...  

2007 ◽  
Vol 292 (4) ◽  
pp. R1649-R1656 ◽  
Author(s):  
John Yuh-Lin Yu ◽  
Chin-Hon Pon ◽  
Hui-Chen Ku ◽  
Chih-Ting Wang ◽  
Yung-Hsi Kao

Galanin is a hormone 29 or 30 amino acids (aa) long that is widely distributed within the body and exerts numerous biological effects in vertebrates. To fully understand its physiological roles in reptiles, we analyzed preprogalanin cDNA structure and expression in the turtle pituitary. Using the Chinese soft-shell turtle ( Pelodiscus sinensis order Testudines), we obtained a 672-base pair (bp) cDNA containing a 99-bp 5′-untranslated region, a 324-bp preprogalanin coding region, and a 249-bp 3′-untranslated region. The open-reading frame encoded a 108-aa preprogalanin protein with a putative 23-aa signal sequence at the NH2 terminus. Based on the location of putative Lys-Arg dibasic cleavage sites and an amidation signal of Gly-Lys-Arg, we propose that turtle preprogalanin is processed to yield a 29-aa galanin peptide with Gly1 and Thr29 substitutions and a COOH-terminal amidation. Sequence comparison revealed that turtle preprogalanin and galanin-29 had 48–81% and 76–96% aa identities with those of other vertebrates, respectively, suggesting their conservative nature. Expression of the turtle galanin gene was detected in the pituitary, brain, hypothalamus, stomach, liver, pancreas, testes, ovaries, and intestines, but not in the adipose or muscle tissues, suggesting tissue-dependent differences. An in vitro study that used pituitary tissue culture indicated that treatment with 17β-estradiol, testosterone, or gonadotropin-releasing hormone resulted in increased galanin mRNA expression with dose- or time-dependent differences, whereas leptin and neuropeptide Y reduced galanin mRNA levels. These results suggest a hormone-dependent effect on hypophyseal galanin mRNA expression.


1992 ◽  
Vol 118 (5) ◽  
pp. 1097-1108 ◽  
Author(s):  
F Verde ◽  
M Dogterom ◽  
E Stelzer ◽  
E Karsenti ◽  
S Leibler

In eukaryotic cells, the onset of mitosis involves cyclin molecules which interact with proteins of the cdc2 family to produce active kinases. In vertebrate cells, cyclin A dependent kinases become active in S- and pro-phases, whereas a cyclin B-dependent kinase is mostly active in metaphase. It has recently been shown that, when added to Xenopus egg extracts, bacterially produced A- and B-type cyclins associate predominantly with the same kinase catalytic subunit, namely p34cdc2, and induce its histone H1 kinase activity with different kinetics. Here, we show that in the same cell free system, both the addition of cyclin A and cyclin B changes microtubule behavior. However, the cyclin A-dependent kinase does not induce a dramatic shortening of centrosome-nucleated microtubules whereas the cyclin B-dependent kinase does, as previously reported. Analysis of the parameters of microtubule dynamics by fluorescence video microscopy shows that the dramatic shortening induced by the cyclin B-dependent kinase is correlated with a several fold increase in catastrophe frequency, an effect not observed with the cyclin A-dependent kinase. Using a simple mathematical model, we show how the length distributions of centrosome-nucleated microtubules relate to the four parameters that describe microtubule dynamics. These four parameters define a threshold between unlimited microtubule growth and the establishment of steady-state dynamics, which implies that well defined steady-state length distributions can be produced by regulating precisely the respective values of the dynamical parameters. Moreover, the dynamical model predicts that increasing catastrophe frequency is more efficient than decreasing the rescue frequency to reduce the average steady state length of microtubules. These theoretical results are quantitatively confirmed by the experimental data.


Sign in / Sign up

Export Citation Format

Share Document