scholarly journals Knowledge and Theme Discovery across Very Large Biological Data Sets Using Distributed Queries: A Prototype Combining Unstructured and Structured Data

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e80503 ◽  
Author(s):  
Uma S. Mudunuri ◽  
Mohamad Khouja ◽  
Stephen Repetski ◽  
Girish Venkataraman ◽  
Anney Che ◽  
...  
2020 ◽  
Vol 21 (S18) ◽  
Author(s):  
Sudipta Acharya ◽  
Laizhong Cui ◽  
Yi Pan

Abstract Background In recent years, to investigate challenging bioinformatics problems, the utilization of multiple genomic and proteomic sources has become immensely popular among researchers. One such issue is feature or gene selection and identifying relevant and non-redundant marker genes from high dimensional gene expression data sets. In that context, designing an efficient feature selection algorithm exploiting knowledge from multiple potential biological resources may be an effective way to understand the spectrum of cancer or other diseases with applications in specific epidemiology for a particular population. Results In the current article, we design the feature selection and marker gene detection as a multi-view multi-objective clustering problem. Regarding that, we propose an Unsupervised Multi-View Multi-Objective clustering-based gene selection approach called UMVMO-select. Three important resources of biological data (gene ontology, protein interaction data, protein sequence) along with gene expression values are collectively utilized to design two different views. UMVMO-select aims to reduce gene space without/minimally compromising the sample classification efficiency and determines relevant and non-redundant gene markers from three cancer gene expression benchmark data sets. Conclusion A thorough comparative analysis has been performed with five clustering and nine existing feature selection methods with respect to several internal and external validity metrics. Obtained results reveal the supremacy of the proposed method. Reported results are also validated through a proper biological significance test and heatmap plotting.


2014 ◽  
Vol 11 (2) ◽  
pp. 68-79
Author(s):  
Matthias Klapperstück ◽  
Falk Schreiber

Summary The visualization of biological data gained increasing importance in the last years. There is a large number of methods and software tools available that visualize biological data including the combination of measured experimental data and biological networks. With growing size of networks their handling and exploration becomes a challenging task for the user. In addition, scientists also have an interest in not just investigating a single kind of network, but on the combination of different types of networks, such as metabolic, gene regulatory and protein interaction networks. Therefore, fast access, abstract and dynamic views, and intuitive exploratory methods should be provided to search and extract information from the networks. This paper will introduce a conceptual framework for handling and combining multiple network sources that enables abstract viewing and exploration of large data sets including additional experimental data. It will introduce a three-tier structure that links network data to multiple network views, discuss a proof of concept implementation, and shows a specific visualization method for combining metabolic and gene regulatory networks in an example.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 741 ◽  
Author(s):  
Kevin Rue-Albrecht ◽  
Federico Marini ◽  
Charlotte Soneson ◽  
Aaron T.L. Lun

Data exploration is critical to the comprehension of large biological data sets generated by high-throughput assays such as sequencing. However, most existing tools for interactive visualisation are limited to specific assays or analyses. Here, we present the iSEE (Interactive SummarizedExperiment Explorer) software package, which provides a general visual interface for exploring data in a SummarizedExperiment object. iSEE is directly compatible with many existing R/Bioconductor packages for analysing high-throughput biological data, and provides useful features such as simultaneous examination of (meta)data and analysis results, dynamic linking between plots and code tracking for reproducibility. We demonstrate the utility and flexibility of iSEE by applying it to explore a range of real transcriptomics and proteomics data sets.


2021 ◽  
Author(s):  
Andrew J Kavran ◽  
Aaron Clauset

Abstract Background: Large-scale biological data sets are often contaminated by noise, which can impede accurate inferences about underlying processes. Such measurement noise can arise from endogenous biological factors like cell cycle and life history variation, and from exogenous technical factors like sample preparation and instrument variation.Results: We describe a general method for automatically reducing noise in large-scale biological data sets. This method uses an interaction network to identify groups of correlated or anti-correlated measurements that can be combined or “filtered” to better recover an underlying biological signal. Similar to the process of denoising an image, a single network filter may be applied to an entire system, or the system may be first decomposed into distinct modules and a different filter applied to each. Applied to synthetic data with known network structure and signal, network filters accurately reduce noise across a wide range of noise levels and structures. Applied to a machine learning task of predicting changes in human protein expression in healthy and cancerous tissues, network filtering prior to training increases accuracy up to 43% compared to using unfiltered data.Conclusions: Network filters are a general way to denoise biological data and can account for both correlation and anti-correlation between different measurements. Furthermore, we find that partitioning a network prior to filtering can significantly reduce errors in networks with heterogenous data and correlation patterns, and this approach outperforms existing diffusion based methods. Our results on proteomics data indicate the broad potential utility of network filters to applications in systems biology.


Author(s):  
Heiko Paulheim ◽  
Christian Bizer

Linked Data on the Web is either created from structured data sources (such as relational databases), from semi-structured sources (such as Wikipedia), or from unstructured sources (such as text). In the latter two cases, the generated Linked Data will likely be noisy and incomplete. In this paper, we present two algorithms that exploit statistical distributions of properties and types for enhancing the quality of incomplete and noisy Linked Data sets: SDType adds missing type statements, and SDValidate identifies faulty statements. Neither of the algorithms uses external knowledge, i.e., they operate only on the data itself. We evaluate the algorithms on the DBpedia and NELL knowledge bases, showing that they are both accurate as well as scalable. Both algorithms have been used for building the DBpedia 3.9 release: With SDType, 3.4 million missing type statements have been added, while using SDValidate, 13,000 erroneous RDF statements have been removed from the knowledge base.


Author(s):  
Diego Milone ◽  
Georgina Stegmayer ◽  
Matías Gerard ◽  
Laura Kamenetzky ◽  
Mariana López ◽  
...  

The volume of information derived from post genomic technologies is rapidly increasing. Due to the amount of involved data, novel computational methods are needed for the analysis and knowledge discovery into the massive data sets produced by these new technologies. Furthermore, data integration is also gaining attention for merging signals from different sources in order to discover unknown relations. This chapter presents a pipeline for biological data integration and discovery of a priori unknown relationships between gene expressions and metabolite accumulations. In this pipeline, two standard clustering methods are compared against a novel neural network approach. The neural model provides a simple visualization interface for identification of coordinated patterns variations, independently of the number of produced clusters. Several quality measurements have been defined for the evaluation of the clustering results obtained on a case study involving transcriptomic and metabolomic profiles from tomato fruits. Moreover, a method is proposed for the evaluation of the biological significance of the clusters found. The neural model has shown a high performance in most of the quality measures, with internal coherence in all the identified clusters and better visualization capabilities.


Sign in / Sign up

Export Citation Format

Share Document