scholarly journals Nogo-Receptor 1 Deficiency Has No Influence on Immune Cell Repertoire or Function during Experimental Autoimmune Encephalomyelitis

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82101 ◽  
Author(s):  
Sara A. Litwak ◽  
Natalie L. Payne ◽  
Naomi Campanale ◽  
Ezgi Ozturk ◽  
Jae Young Lee ◽  
...  
2020 ◽  
Author(s):  
Jong Hee Choi ◽  
Jinhee Oh ◽  
Min Jung Lee ◽  
Ik-Hyun Cho

Abstract Background Lysophosphatidic acid receptors (LPARs) are G-protein-coupled receptors involved in many physiological functions in the central nervous system. However, the role of the LPARs in multiple sclerosis (MS) has not been clearly defined yet. Methods Here, we investigated the roles of LPARs in myelin oligodendrocyte glycoprotein peptides-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Results Pre-inhibition with antagonists ameliorated behavioral symptoms of EAElo. Specifically, LPAR1-3 antagonist Ki16425 (intraperitoneal) deteriorated symptoms of EAElow associated with increased demyelination, chemokine expression, cellular infiltration, and immune cell activation (microglia and macrophage) in spinal cords of mice compared to the sham group. This LPAR1-3 antagonist also increased the infiltration of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells into spinal cords of EAElow mice along with upregulated mRNA expression of IFN-γ and IL-17 and impaired BBB in the spinal cord. The underlying mechanism for negative effects of LPAR1-3 antagonist was associated with the overproduction of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 2 and NOX3. Interestingly, LPAR1/2 agonist 1-oleoyl-LPA (LPA 18:1) (intraperitoneal) ameliorated symptoms of EAEhigh and improved representative pathological features of spinal cords of EAEhigh mice. Conclusions Our findings strongly suggest that some agents that can stimulate LPARs might have potential therapeutic implications for autoimmune demyelinating diseases such as MS.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800039 ◽  
Author(s):  
Lei Sun ◽  
Elphine Telles ◽  
Molly Karl ◽  
Fengdong Cheng ◽  
Noreen Luetteke ◽  
...  

Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). There is no known cure for MS, and currently available drugs for managing this disease are only effective early on and have many adverse side effects. Results from recent studies suggest that histone deacetylase (HDAC) inhibitors may be useful for the treatment of autoimmune and inflammatory diseases such as MS. However, the underlying mechanisms by which HDACs influence immune-mediated diseases such as MS are unclear. More importantly, the question of which specific HDAC(s) are suitable drug targets for the potential treatment of MS remains unanswered. Here, we investigate the functional role of HDAC11 in experimental autoimmune encephalomyelitis, a mouse model for MS. Our results indicate that the loss of HDAC11 in KO mice significantly reduces clinical severity and demyelination of the spinal cord in the post-acute phase of experimental autoimmune encephalomyelitis. The absence of HDAC11 leads to reduced immune cell infiltration into the CNS and decreased monocytes and myeloid DCs in the chronic progressive phase of the disease. Mechanistically, HDAC11 controls the expression of the pro-inflammatory chemokine C–C motif ligand 2 (CCL2) gene by enabling the binding of PU.1 transcription factor to the CCL2 promoter. Our results reveal a novel pathophysiological function for HDAC11 in CNS demyelinating diseases, and warrant further investigations into the potential use of HDAC11-specific inhibitors for the treatment of chronic progressive MS.


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Andrés Quintanar‐Stephano ◽  
Alejandro Organista ◽  
Manuel Tinajero ◽  
Evangelina González ◽  
Diego García ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6824 ◽  
Author(s):  
Jinming Han ◽  
Keying Zhu ◽  
Kai Zhou ◽  
Ramil Hakim ◽  
Sreenivasa Raghavan Sankavaram ◽  
...  

Multiple sclerosis (MS) is a chronic neuroinflammatory disorder of the central nervous system (CNS) that usually presents in young adults and predominantly in females. Microglia, a major resident immune cell in the CNS, are critical players in both CNS homeostasis and disease. We have previously demonstrated that microglia can be efficiently depleted by the administration of tamoxifen in Cx3cr1CreER/+Rosa26DTA/+ mice, with ensuing repopulation deriving from both the proliferation of residual CNS resident microglia and the engraftment of peripheral monocyte-derived microglia-like cells. In this study, tamoxifen was administered to Cx3cr1CreER/+Rosa26DTA/+ and Cx3cr1CreER/+ female and male mice. Experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, was induced by active immunization with myelin oligodendrocyte glycoprotein (MOG) one month after tamoxifen injections in Cx3cr1CreER/+Rosa26DTA/+ mice and Cx3cr1CreER/+ mice, a time point when the CNS niche was colonized by microglia derived from both CNS microglia and peripherally-derived macrophages. We demonstrate that engraftment of microglia-like cells following microglial depletion exacerbated EAE in Cx3cr1CreER/+Rosa26DTA/+ female mice as assessed by clinical symptoms and the expression of CNS inflammatory factors, but these findings were not evident in male mice. Higher major histocompatibility complex class II expression and cytokine production in the female CNS contributed to the sex-dependent EAE severity in mice following engraftment of microglia-like cells. An underestimated yet marked sex-dependent microglial activation pattern may exist in the injured CNS during EAE.


2007 ◽  
Vol 81 (18) ◽  
pp. 9942-9949 ◽  
Author(s):  
Yael Friedman-Levi ◽  
Haim Ovadia ◽  
Romana Hoftberger ◽  
Ofira Einstein ◽  
Oded Abramsky ◽  
...  

ABSTRACT During the years or decades of prion disease incubation, at-risk individuals are certain to encounter diverse pathological insults, such as viral and bacterial infections, autoimmune diseases, or inflammatory processes. Whether prion disease incubation time and clinical signs or otherwise the pathology of intercurrent diseases can be affected by the coinfection process is unknown. To investigate this possibility, mice infected with the scrapie agent at both high and low titers were subsequently induced for experimental autoimmune encephalomyelitis, an immune system-mediated model of central nervous system (CNS) inflammation. We show here that coinduced mice died from a progressive neurological disease long before control mice succumbed to classical scrapie. To investigate the mechanism of the coinduced syndrome, we evaluated biochemical and pathological markers of both diseases. Brain and spleen PrPSc levels in the dying coinduced mice were comparable to those observed in asymptomatic scrapie-infected animals, suggesting that coinduced disease is not an accelerated form of scrapie. In contrast, inflammatory markers, such as demyelination, immune cell infiltrates, and gliosis, were markedly increased in coinduced mouse spinal cords. Activated astrocytes were especially elevated in the medulla oblongata. Furthermore, PrPsc depositions were found in demyelinated white matter areas in coinduced mouse spinal cords, suggesting the presence of activated infected immune cells that infiltrate into the CNS to facilitate the process of prion neuroinvasion. We hypothesize that inflammatory processes affecting the CNS may have severe clinical implications in subjects incubating prion diseases.


Sign in / Sign up

Export Citation Format

Share Document