scholarly journals Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e103711 ◽  
Author(s):  
Daniel Magnabosco Marra ◽  
Jeffrey Q. Chambers ◽  
Niro Higuchi ◽  
Susan E. Trumbore ◽  
Gabriel H. P. M. Ribeiro ◽  
...  
Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


2014 ◽  
Vol 14 (17) ◽  
pp. 23995-24041 ◽  
Author(s):  
J. A. Holm ◽  
K. Jardine ◽  
A. B. Guenther ◽  
J. Q. Chambers ◽  
E. Tribuzy

Abstract. Tropical trees are known to be large emitters of biogenic volatile organic compounds (BVOC), accounting for up to 75% of the global isoprene budget. Once in the atmosphere, these compounds influence multiple processes associated with air quality and climate. However, uncertainty in biogenic emissions is two-fold, (1) the environmental controls over isoprene emissions from tropical forests remain highly uncertain; and (2) our ability to accurately represent these environmental controls within models is lacking. This study evaluated the biophysical parameters that drive the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) embedded in a biogeochemistry land surface model, the Community Land Model (CLM), with a focus on isoprene emissions from an Amazonian forest. Upon evaluating the sensitivity of 19 parameters in CLM that currently influence isoprene emissions by using a Monte Carlo analysis, up to 61% of the uncertainty in mean isoprene emissions was caused by the uncertainty in the parameters related to leaf temperature. The eight parameters associated with photosynthetic active radiation (PAR) contributed in total to only 15% of the uncertainty in mean isoprene emissions. Leaf temperature was strongly correlated with isoprene emission activity (R2 = 0.89). However, when compared to field measurements in the Central Amazon, CLM failed to capture the upper 10–14 °C of leaf temperatures throughout the year (i.e., failed to represent ~32 to 46 °C), and the spread observed in field measurements was not representative in CLM. This is an important parameter to accurately simulate due to the non-linear response of emissions to temperature. MEGAN-CLM 4.0 overestimated isoprene emissions by 60% for a Central Amazon forest (5.7 mg m−2 h−1 vs. 3.6 mg m−2 h−1), but due to reductions in leaf area index (LAI) by 28% in MEGAN-CLM 4.5 isoprene emissions were within 7% of observed data (3.8 mg m−2 h−1). When a slight adjustment to leaf temperature was made to match observations, isoprene emissions increased 24%, up to 4.8 mg m−2 h−1. Air temperatures are very likely to increase in tropical regions as a result of human induced climate change. Reducing the uncertainty of leaf temperature in BVOC algorithms, as well as improving the accuracy of replicating leaf temperature output in land surface models is warranted in order to improve estimations of tropical BVOC emissions.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Fernando D.B. Espírito-Santo ◽  
Manuel Gloor ◽  
Michael Keller ◽  
Yadvinder Malhi ◽  
Sassan Saatchi ◽  
...  

Abstract Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.28 Pg C y−1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.01 Pg C y−1, and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.003 Pg C y−1. Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink.


2010 ◽  
Vol 46 (11) ◽  
Author(s):  
M. Konar ◽  
R. Muneepeerakul ◽  
S. Azaele ◽  
E. Bertuzzo ◽  
A. Rinaldo ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 73-82
Author(s):  
Carlos E. Alvarez-Montalván ◽  
Saúl Manrique-León ◽  
Mauro Vela-Da Fonseca ◽  
Jorge Cardozo-Soarez ◽  
Julio Callo-Ccorcca ◽  
...  

2018 ◽  
Vol 24 (9) ◽  
pp. 4266-4279 ◽  
Author(s):  
Victor Alexandre Hardt Ferreira dos Santos ◽  
Marciel José Ferreira ◽  
João Victor Figueiredo Cardoso Rodrigues ◽  
Maquelle Neves Garcia ◽  
João Vitor Barbosa Ceron ◽  
...  

Author(s):  
B. Brede ◽  
J. Verbesselt ◽  
L. Dutrieux ◽  
M. Herold

The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as Enhanced Vegetation Index (EVI) is an artifact of variations in sun-sensor geometry throughout the year. We aimed to reproduce these results with the Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD43 product suite, which allows modeling the Bidirectional Reflectance Distribution Function (BRDF) and keeping sun-sensor geometry constant. The derived BRDF-adjusted EVI was spatially aggregated over large areas of central Amazon forests. The resulting time series of EVI spanning the 2000-2013 period contained distinct seasonal patterns with peak values at the onset of the dry season, but also followed the same pattern of sun geometry expressed as Solar Zenith Angle (SZA). Additionally, we assessed EVI’s sensitivity to precipitation anomalies. For that we compared BRDF-adjusted EVI dry season anomalies to two drought indices (Maximum Cumulative Water Deficit, Standardized Precipitation Index). This analysis covered the whole of Amazonia and data from the years 2000 to 2013. The results showed no meaningful connection between EVI anomalies and drought. This is in contrast to other studies that investigate the drought impact on EVI and forest photosynthetic capacity. The results from both sub-analyses question the predictive power of EVI for large scale assessments of forest ecosystem functioning in Amazonia. Based on the presented results, we recommend a careful evaluation of the EVI for applications in tropical forests, including rigorous validation supported by ground plots.


2019 ◽  
Vol 116 (15) ◽  
pp. 7382-7386 ◽  
Author(s):  
Qinfeng Guo ◽  
Songlin Fei ◽  
Kevin M. Potter ◽  
Andrew M. Liebhold ◽  
Jun Wen

Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.


2021 ◽  
Vol 288 (1946) ◽  
pp. 20203100
Author(s):  
Kirstin Jansen ◽  
Goddert von Oheimb ◽  
Helge Bruelheide ◽  
Werner Härdtle ◽  
Andreas Fichtner

Biodiversity is considered to mitigate the adverse effects of changing precipitation patterns. However, our understanding of how tree diversity at the local neighbourhood scale modulates the water use and leaf physiology of individual trees remains unclear. We made use of a large-scale tree diversity experiment in subtropical China to study eight tree species along an experimentally manipulated gradient of local neighbourhood tree species richness. Twig wood carbon isotope composition ( δ 13 C wood ) was used as an indicator for immediate leaf-level responses to water availability in relation to local neighbourhood conditions and a target tree's functional traits. Across species, a target tree's δ 13 C wood signatures decreased progressively with increasing neighbourhood species richness, with effects being strongest at high neighbourhood shading intensity. Moreover, the δ 13 C wood -shading relationship shifted from positive (thin-leaved species) or neutral (thick-leaved species) in conspecific to negative in heterospecific neighbourhoods, most likely owing to a lower interspecific competition for water and microclimate amelioration. This suggests that promoting tree species richness at the local neighbourhood scale may improve a tree's local water supply with potential effects for an optimized water-use efficiency of tree communities during drought. This assumption, however, requires validation by further studies that focus on mechanisms that regulate the water availability in mixtures.


Sign in / Sign up

Export Citation Format

Share Document