scholarly journals Type I Collagen as an Extracellular Matrix for the In Vitro Growth of Human Small Intestinal Epithelium

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107814 ◽  
Author(s):  
Ziyad Jabaji ◽  
Garrett J. Brinkley ◽  
Hassan A. Khalil ◽  
Connie M. Sears ◽  
Nan Ye Lei ◽  
...  
2013 ◽  
Vol 19 (12) ◽  
pp. 961-969 ◽  
Author(s):  
Ziyad Jabaji ◽  
Connie M. Sears ◽  
Garrett J. Brinkley ◽  
Nan Ye Lei ◽  
Vaidehi S. Joshi ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 870
Author(s):  
Haihan Zhang ◽  
Dongfeng Li ◽  
Lingbin Liu ◽  
Ling Xu ◽  
Mo Zhu ◽  
...  

The small intestine plays an important role for animals to digest and absorb nutrients. The epithelial lining of the intestine develops from the embryonic endoderm of the embryo. The mature intestinal epithelium is composed of different types of functional epithelial cells that are derived from stem cells, which are located in the crypts. Chickens have been widely used as an animal model for researching vertebrate embryonic development. However, little is known about the molecular basis of development and differentiation within the chicken small intestinal epithelium. This review introduces processes of development and growth in the chicken gut, and compares the cellular characteristics and signaling pathways between chicken and mammals, including Notch and Wnt signaling that control the differentiation in the small intestinal epithelium. There is evidence that the chicken intestinal epithelium has a distinct cellular architecture and proliferation zone compared to mammals. The establishment of an in vitro cell culture model for chickens will provide a novel tool to explore molecular regulation of the chicken intestinal development and differentiation.


1993 ◽  
Vol 293 (2) ◽  
pp. 387-394 ◽  
Author(s):  
S R Lamandé ◽  
J F Bateman

A type I collagen reporter gene construct, designed to facilitate detailed analysis of the consequences of introduced structural and regulatory mutations on collagen biosynthesis and participation in the extracellular matrix, was produced by site-directed mutagenesis of the mouse COL1A1 gene. The reporter construct, pWTCI-Ile822, carried a single base change which converted the codon for amino acid 822 of the triple helix from methionine to isoleucine. This change allowed the reporter protein, [Ile822]alpha 1(I), to be distinguished from the wild-type alpha 1(I), and quantified, by its altered CNBr cleavage pattern. In mouse Mov13 cells, which synthesize no endogenous pro alpha 1(I), reporter chains associated with endogenous pro alpha 2(I), formed pepsin-stable triple helices and were secreted efficiently from the cell. The thermal stability of wild-type molecules and molecules containing the reporter [Ile822]alpha 1(I) chains was identical. The biosynthetic characteristics of wild-type and reporter chains were directly compared in stably transfected 3T6 cells. These cells did not make a distinction between reporter and endogenous alpha 1(I) chains, which were secreted from the cells at the same rate and were processed and deposited into the 3T6 cell in vitro accumulated extracellular matrix with equal efficiency. These data demonstrate that the helical sequence alteration in the reporter protein is functionally neutral and that the reporter construct, pWTCI-Ile822, is a suitable vector for the analysis of the biochemical effects of site-directed mutations in the putative COL1A1 functional domains.


2004 ◽  
Vol 167 (4) ◽  
pp. 757-767 ◽  
Author(s):  
Tae-Hwa Chun ◽  
Farideh Sabeh ◽  
Ichiro Ota ◽  
Hedwig Murphy ◽  
Kevin T. McDonagh ◽  
...  

During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix–degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP–dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., β3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.


Author(s):  
Zhongyuan Guo ◽  
Glen DeLoid ◽  
Xiaoqiong Cao ◽  
Dimitrios Bitounis ◽  
Kaarunya Sampathkumar ◽  
...  

Nanoscale materials derived from natural biopolymers like cellulose and chitosan have many potentially useful agri-food and oral drug delivery applications. Because of their large and potentially bioactive surface areas and...


Sign in / Sign up

Export Citation Format

Share Document