scholarly journals Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133921 ◽  
Author(s):  
Daniel Stucht ◽  
K. Appu Danishad ◽  
Peter Schulze ◽  
Frank Godenschweger ◽  
Maxim Zaitsev ◽  
...  
2020 ◽  
Vol 1 (1) ◽  
pp. 27-43 ◽  
Author(s):  
João P. de Almeida Martins ◽  
Chantal M. W. Tax ◽  
Filip Szczepankiewicz ◽  
Derek K. Jones ◽  
Carl-Fredrik Westin ◽  
...  

Abstract. Magnetic resonance imaging (MRI) is the primary method for noninvasive investigations of the human brain in health, disease, and development but yields data that are difficult to interpret whenever the millimeter-scale voxels contain multiple microscopic tissue environments with different chemical and structural properties. We propose a novel MRI framework to quantify the microscopic heterogeneity of the living human brain as spatially resolved five-dimensional relaxation–diffusion distributions by augmenting a conventional diffusion-weighted imaging sequence with signal encoding principles from multidimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, relaxation–diffusion correlation methods from Laplace NMR of porous media, and Monte Carlo data inversion. The high dimensionality of the distribution space allows resolution of multiple microscopic environments within each heterogeneous voxel as well as their individual characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates with the link between microstructure and the anisotropic diffusivity of tissue water. The proposed framework is demonstrated on a healthy volunteer using both exhaustive and clinically viable acquisition protocols.


2019 ◽  
Author(s):  
João P. de Almeida Martins ◽  
Chantal M. W. Tax ◽  
Filip Szczepankiewicz ◽  
Derek K. Jones ◽  
Carl-Fredrik Westin ◽  
...  

Abstract. Magnetic resonance imaging (MRI) is the primary method for non-invasive investigations of the human brain in health, disease, and development, but yields data that are difficult to interpret whenever the millimeter-scale voxels contain multiple microscopic tissue environments with different chemical and structural properties. We propose a clinically feasible MRI framework to quantify the microscopic heterogeneity of the living human brain as spatially resolved five-dimensional relaxation-diffusion distributions by augmenting a conventional diffusion-weighted imaging sequence with signal encoding principles from multidimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, relaxation-diffusion correlation methods from Laplace NMR of porous media, and Monte Carlo data inversion. The high dimensionality of the distribution space allows resolution of multiple microscopic environments within each heterogeneous voxel as well as their individual characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates with the link between microstructure and the anisotropic diffusivity of tissue water.


2018 ◽  
Vol 115 (41) ◽  
pp. E9727-E9736 ◽  
Author(s):  
Jie Wen ◽  
Manu S. Goyal ◽  
Serguei V. Astafiev ◽  
Marcus E. Raichle ◽  
Dmitriy A. Yablonskiy

fMRI revolutionized neuroscience by allowing in vivo real-time detection of human brain activity. While the nature of the fMRI signal is understood as resulting from variations in the MRI signal due to brain-activity-induced changes in the blood oxygenation level (BOLD effect), these variations constitute a very minor part of a baseline MRI signal. Hence, the fundamental (and not addressed) questions are how underlying brain cellular composition defines this baseline MRI signal and how a baseline MRI signal relates to fMRI. Herein we investigate these questions by using a multimodality approach that includes quantitative gradient recalled echo (qGRE), volumetric and functional connectivity MRI, and gene expression data from the Allen Human Brain Atlas. We demonstrate that in vivo measurement of the major baseline component of a GRE signal decay rate parameter (R2t*) provides a unique genetic perspective into the cellular constituents of the human cortex and serves as a previously unidentified link between cortical tissue composition and fMRI signal. Data show that areas of the brain cortex characterized by higher R2t* have high neuronal density and have stronger functional connections to other brain areas. Interestingly, these areas have a relatively smaller concentration of synapses and glial cells, suggesting that myelinated cortical axons are likely key cortical structures that contribute to functional connectivity. Given these associations, R2t* is expected to be a useful signal in assessing microstructural changes in the human brain during development and aging in health and disease.


1994 ◽  
Vol 31 (2) ◽  
pp. 185
Author(s):  
Yong Whee Bahk ◽  
Kyung Sub Shinn ◽  
Tae Suk Suh ◽  
Bo Young Choe ◽  
Kyo Ho Choi

2017 ◽  
Vol 30 (9) ◽  
pp. e3734 ◽  
Author(s):  
Uran Ferizi ◽  
Benoit Scherrer ◽  
Torben Schneider ◽  
Mohammad Alipoor ◽  
Odin Eufracio ◽  
...  

Author(s):  
Y Liu ◽  
D Gebrezgiabhier ◽  
J Arturo Larco ◽  
S Madhani ◽  
A Shahid ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 914
Author(s):  
Melanie V. Brady ◽  
Flora M. Vaccarino

The complexities of human neurodevelopment have historically been challenging to decipher but continue to be of great interest in the contexts of healthy neurobiology and disease. The classic animal models and monolayer in vitro systems have limited the types of questions scientists can strive to answer in addition to the technical ability to answer them. However, the tridimensional human stem cell-derived organoid system provides the unique opportunity to model human development and mimic the diverse cellular composition of human organs. This strategy is adaptable and malleable, and these neural organoids possess the morphogenic sensitivity to be patterned in various ways to generate the different regions of the human brain. Furthermore, recapitulating human development provides a platform for disease modeling. One master regulator of human neurodevelopment in many regions of the human brain is sonic hedgehog (SHH), whose expression gradient and pathway activation are responsible for conferring ventral identity and shaping cellular phenotypes throughout the neural axis. This review first discusses the benefits, challenges, and limitations of using organoids for studying human neurodevelopment and disease, comparing advantages and disadvantages with other in vivo and in vitro model systems. Next, we explore the range of control that SHH exhibits on human neurodevelopment, and the application of SHH to various stem cell methodologies, including organoids, to expand our understanding of human development and disease. We outline how this strategy will eventually bring us much closer to uncovering the intricacies of human neurodevelopment and biology.


Nano LIFE ◽  
2013 ◽  
Vol 03 (04) ◽  
pp. 1343003 ◽  
Author(s):  
BRANDON MATTIX ◽  
THOMAS MOORE ◽  
OLGA UVAROV ◽  
SAMUEL POLLARD ◽  
LAUREN O'DONNELL ◽  
...  

Current chemotherapy treatments are limited by poor drug solubility, rapid drug clearance and systemic side effects. Additionally, drug penetration into solid tumors is limited by physical diffusion barriers [e.g., extracellular matrix (ECM)]. Nanoparticle (NP) blood circulation half-life, biodistribution and ability to cross extracellular and cellular barriers will be dictated by NP composition, size, shape and surface functionality. Here, we investigated the effect of surface charge of poly(lactide)-poly(ethylene glycol) NPs on mediating cellular interaction. Polymeric NPs of equal sizes were used that had two different surface functionalities: negatively charged carboxyl ( COOH ) and neutral charged methoxy ( OCH 3). Cellular uptake studies showed significantly higher uptake in human brain cancer cells compared to noncancerous human brain cells, and negatively charged COOH NPs were uptaken more than neutral OCH 3 NPs in 2D culture. NPs were also able to load and control the release of paclitaxel (PTX) over 19 days. Toxicity studies in U-87 glioblastoma cells showed that PTX-loaded NPs were effective drug delivery vehicles. Effect of surface charge on NP interaction with the ECM was investigated using collagen in a 3D cellular uptake model, as collagen content varies with the type of cancer and the stage of the disease compared to normal tissues. Results demonstrated that NPs can effectively diffuse across an ECM barrier and into cells, but NP mobility is dictated by surface charge. In vivo biodistribution of OCH 3 NPs in intracranial tumor xenografts showed that NPs more easily accumulated in tumors with less collagen. These results indicate that a robust understanding of NP interaction with various tumor environments can lead to more effective patient-tailored therapies.


Sign in / Sign up

Export Citation Format

Share Document