scholarly journals New influenza A Virus Entry Inhibitors Derived from the Viral Fusion Peptides

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138426 ◽  
Author(s):  
Wenjiao Wu ◽  
Dongguo Lin ◽  
Xintian Shen ◽  
Fangfang Li ◽  
Yuxin Fang ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Dongguo Lin ◽  
Fangfang Li ◽  
Qiuyi Wu ◽  
Xiangkun Xie ◽  
Wenjiao Wu ◽  
...  

Viruses ◽  
2013 ◽  
Vol 5 (1) ◽  
pp. 352-373 ◽  
Author(s):  
Jie Yang ◽  
Minmin Li ◽  
Xintian Shen ◽  
Shuwen Liu

2017 ◽  
Vol 144 ◽  
pp. 35-51 ◽  
Author(s):  
Dongguo Lin ◽  
Yinzhu Luo ◽  
Guang Yang ◽  
Fangfang Li ◽  
Xiangkun Xie ◽  
...  

2021 ◽  
Author(s):  
Elizabeth Webster ◽  
Katherine Liu ◽  
Robert Rawle ◽  
Steven Boxer

Influenza A virus (IAV) binds to sialylated glycans on the cell membrane before endocytosis and fusion. Cell surface glycans are highly heterogenous in length and glycosylation density, which leads to variation in the distance and rigidity with which IAV is held away from the cell membrane. To gain mechanistic insight into how receptor length and rigidity impact the mechanism of IAV entry, we employed synthetic DNA-lipids as highly tunable surrogate receptors. We tethered IAV to target membranes with a panel of DNA-lipids to investigate the effects of the distance and tether flexibility between virions and target membranes on the kinetics of IAV binding and fusion. Tether length and the presence of a flexible linker led to higher rates of IAV binding, while the efficiencies of lipid and content mixing were typically lower for longer and more rigid DNA tethers. For all DNA tether modifications, we found that the rates of IAV lipid and content mixing were unchanged. These results suggest that variations in the interface between IAV and a target membrane do not significantly impact the rate-limiting step of fusion, or the low-pH triggered engagement of viral fusion peptides with the target membrane. However, our results imply that the flexibility of the viral receptor is important for ensuring that hemifusion events are able to successfully proceed to pore formation.


2021 ◽  
Author(s):  
Elizabeth Webster ◽  
Katherine Liu ◽  
Robert Rawle ◽  
Steven Boxer

Influenza A virus (IAV) binds to sialylated glycans on the cell membrane before endocytosis and fusion. Cell surface glycans are highly heterogenous in length and glycosylation density, which leads to variation in the distance and rigidity with which IAV is held away from the cell membrane. To gain mechanistic insight into how receptor length and rigidity impact the mechanism of IAV entry, we employed synthetic DNA-lipids as highly tunable surrogate receptors. We tethered IAV to target membranes with a panel of DNA-lipids to investigate the effects of the distance and tether flexibility between virions and target membranes on the kinetics of IAV binding and fusion. Tether length and the presence of a flexible linker led to higher rates of IAV binding, while the efficiencies of lipid and content mixing were typically lower for longer and more rigid DNA tethers. For all DNA tether modifications, we found that the rates of IAV lipid and content mixing were unchanged. These results suggest that variations in the interface between IAV and a target membrane do not significantly impact the rate-limiting step of fusion, or the low-pH triggered engagement of viral fusion peptides with the target membrane. However, our results imply that the flexibility of the viral receptor is important for ensuring that hemifusion events are able to successfully proceed to pore formation.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 895
Author(s):  
Mei Luo ◽  
Ximin Wu ◽  
Yiming Li ◽  
Fujiang Guo

Influenza outbreaks pose a serious threat to human health. Hemagglutinin (HA) is an important target for influenza virus entry inhibitors. In this study, we synthesized four pentacyclic triterpene conjugates with a sialylglycopeptide scaffold through the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) and prepared affinity assays of these conjugates with two HAs, namely H1N1 (A/WSN/1933) and H5N1 (A/Hong Kong/483/97), respectively. With a dissociation constant (KD) of 6.89 μM, SCT-Asn-betulinic acid exhibited the strongest affinity with the H1N1 protein. Furthermore, with a KD value of 9.10 μM, SCT-Asn-oleanolic acid exhibited the strongest affinity with the H5N1 protein. The conjugates considerably enhanced antiviral activity, which indicates that pentacyclic triterpenes can be used as a ligand to improve the anti-influenza ability of the sialylglycopeptide molecule by acting on the HA protein.


2017 ◽  
Vol 114 (23) ◽  
pp. E4527-E4529 ◽  
Author(s):  
Hirofumi Ohashi ◽  
Yoshiki Koizumi ◽  
Kento Fukano ◽  
Takaji Wakita ◽  
Alan S. Perelson ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Prem Kumar Kushwaha ◽  
Neha Kumari ◽  
Sneha Nayak ◽  
Keshav Kishor ◽  
Ashoke Sharon

: Outbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARS-CoV-2) initiated in Wuhan city, China, in December 2019 which continued to spread internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutinin-mediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related-viral diseases, including COVID-19. : It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. : The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. : The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at S1/S2 subunit interface in S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and available scope for the new drug discovery process targeting SARS-related virus entry into the host cell.


MedChemComm ◽  
2016 ◽  
Vol 7 (10) ◽  
pp. 1932-1945 ◽  
Author(s):  
Xu Han ◽  
Yongying Shi ◽  
Longlong Si ◽  
Zibo Fan ◽  
Han Wang ◽  
...  

A total of 24 novel sialic acid–pentacyclic triterpene conjugates were synthesized and evaluated as anti-influenza virus entry inhibitors.


Sign in / Sign up

Export Citation Format

Share Document