scholarly journals First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139175 ◽  
Author(s):  
J. A. Fonvielle ◽  
S. Reynaud ◽  
S. Jacquet ◽  
B. LeBerre ◽  
C. Ferrier-Pages
2021 ◽  
pp. 108191
Author(s):  
Morgan Luce McLeod ◽  
Lorinda Bullington ◽  
Cory C. Cleveland ◽  
Johannes Rousk ◽  
Ylva Lekberg

2003 ◽  
Vol 48 (4) ◽  
pp. 1608-1617 ◽  
Author(s):  
Stuart E. G. Findlay ◽  
Robert L. Sinsabaugh ◽  
William V. Sobczak ◽  
M. Hoostal

2017 ◽  
Author(s):  
Ellard R Hunting ◽  
Henrik Barmentlo ◽  
Maarten Schrama ◽  
Peter van Bodegom ◽  
Yujia Zhai ◽  
...  

Background. Microorganisms govern important ecosystems processes, in particular the degradation of organic matter (OM). However, microorganisms are rarely considered in efforts to monitor ecosystem health and functioning. Evidence suggests that environmental perturbations can adversely affect microbial communities and and their ability to use available substrates. However, whether impacted microbial efficiencies in extracting and utilizing the available resources (resource niche breadth) translate to changes in organic matter (OM) degradation in natural systems remains poorly understood. Methods. Here we evaluated effects of differences in organic matter (OM) related to agricultural land use (OM derived from ditches adjacent to grasslands, bulb fields and a pristine dune area) on microbial functioning. We specifically assessed 1) resource niche breadths of microbial communities during initial community assembly in laboratory microcosms and already established natural communities, and 2) how changes in community resource niche breadth translates to the degradation of natural OM. Results. A disparity existed between microbial resource niche breadth in laboratory incubations and natural microbial communities. Resource utilization and niche breadth of natural microbial communities was observed to be constrained in drainage ditches adjacent to agricultural fields. This outcome coincides with retarded degradation of natural OM collected from ditches adjacent to hyacinth bulb fields. Microbial communities in bulb field ditches further showed functional redundancy when offered grassland OM of seemingly higher substrate quality. Discussion. Results presented in this study suggest that agricultural practices can impose constraints on microbial functional diversity by reducing OM resource quality, which can subsequently translate to confined microbial resource niche differentiation and reduced organic matter degradation rates. This hints that assessments of actual microbial resource utilization and niche differentiation could potentially be used to assess the ecological health and functioning of natural communities.


2015 ◽  
Vol 95 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Kristine M. Haynes ◽  
Michael D. Preston ◽  
James W. McLaughlin ◽  
Kara Webster ◽  
Nathan Basiliko

Haynes, K. M., Preston, M. D., McLaughlin, J. W., Webster, K. and Basiliko, N. 2015. Dissimilar bacterial and fungal decomposer communities across rich to poor fen peatlands exhibit functional redundancy. Can. J. Soil Sci. 95: 219–230. Climatic and environmental changes can lead to shifts in the dominant vegetation communities present in northern peatland ecosystems, including from Sphagnum- to vascular-dominated systems. Such shifts in vegetation result in changes to the chemical quality of carbon substrates for soil microbial decomposers, with leaves and roots deposited in the peat surface and subsurface that potentially decompose faster. This study characterized the bacterial and fungal communities present along a nutrient gradient ranging from rich to poor fen peatlands and assessed the metabolic potential of these communities to mineralize a variety of organic matter substrates of varying chemical complexity using substrate-induced respiration (SIR) assays. Distinct microbial communities existed between rich, intermediate and poor fens, but SIR in each of the three sites exhibited the same pattern of carbon mineralization, providing support for the concept of functional redundancy, at least under standardized in vitro conditions. Preferential mineralization of simple organic substrates in the rich fen and complex compounds in the poor fen was not observed. Similarly, no preference was given to “native” organic matter extracts derived from each fen, with microbial communities opting for the most bioavailable substrate. This study suggests that soil bacteria and fungi might be able to respond relatively rapidly to shifts in vegetation communities and subsequent changes in the quality of carbon substrate additions to peatlands associated with environmental and climatic change.


2020 ◽  
Vol 9 (30) ◽  
Author(s):  
He Fu ◽  
Christa B. Smith ◽  
Shalabh Sharma ◽  
Mary Ann Moran

ABSTRACT We report 11 bacterial draft genome sequences and 38 metagenome-assembled genomes (MAGs) from marine phytoplankton exometabolite enrichments. The genomes and MAGs represent marine bacteria adapted to the metabolite environment of phycospheres, organic matter-rich regions surrounding phytoplankton cells, and are useful for exploring functional and taxonomic attributes of phytoplankton-associated bacterial communities.


Geoderma ◽  
2019 ◽  
Vol 351 ◽  
pp. 103-115 ◽  
Author(s):  
Mireia Martí-Roura ◽  
Frank Hagedorn ◽  
Pere Rovira ◽  
Joan Romanyà

1997 ◽  
Vol 36 (6-7) ◽  
pp. 57-64 ◽  
Author(s):  
Alla N. Nozhevnikova ◽  
C. Holliger ◽  
A. Ammann ◽  
A. J. B. Zehnder

Methanogenic degradation of organic matter occurs in a wide temperature range from psychrophilic to extreme thermophilic conditions. Mesophilic and thermophilic methanogenesis is relatively well investigated, but little is known about low temperature methanogenesis and psychrophilic methanogenic communities. The aim of the present work was to study methanogenesis in a wide range of temperatures with samples from sediments of deep lakes. These sediments may be considered deposits of different types of microorganisms, which are constantly exposed to low temperatures. The main question was how psychrophilic methanogenic microbial communities compare to mesophilic and thermophilic ones. Methanogenesis in a temperature range of 2–70°C was investigated using sediment samples from Baldegger lake (65 m) and Soppen lake (25 m), Switzerland. Methane production from organic matter of sediments occurred at all temperatures tested. An exponential dependence of methane production rate was found between 2 and 30°C. Methanogenesis occurred even at 70°C. At the same time stable methane production from organic matter of sediments was observed at temperatures below 10°C. Methanogenic microbial communities were enriched at different temperatures. The communities enriched at 4–8°C had the highest activity at low temperatures indicating that a specific psychrophilic community exists. Addition of substrates such as cellulose, volatile fatty acids (butyrate, propionate, acetate), methanol and H2/CO2 stimulated methane production at all temperatures. H2/CO2 as well as methanol were directly converted to methane under thermophilic conditions. At low temperatures these substrates were converted to methane by a two-step process. First acetate was formed, followed by methane production from acetate. When acetate concentrations were high, acetoclastic methanogenesis was inhibited at low temperatures. This reaction appears to be one of the “bottle neck” in psychrophilic methanogenesis.


Geoderma ◽  
2009 ◽  
Vol 150 (3-4) ◽  
pp. 278-286 ◽  
Author(s):  
A. Stuart Grandy ◽  
Michael S. Strickland ◽  
Christian L. Lauber ◽  
Mark A. Bradford ◽  
Noah Fierer

Sign in / Sign up

Export Citation Format

Share Document