scholarly journals The Application of Magnetic Bead Selection to Investigate Interactions between the Oral Microbiota and Salivary Immunoglobulins

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0158288 ◽  
Author(s):  
Tejal Madhwani ◽  
Andrew J. McBain
2020 ◽  
Author(s):  
Valerio Iebba ◽  
Nunzia Zanotta ◽  
Giuseppina Campisciano ◽  
Verena Zerbato ◽  
Stefano Di Bella ◽  
...  

ABSTRACTSARS-CoV-2 presence has been recently demonstrated in the sputum or saliva, suggesting how the shedding of viral RNA outlasts the end of symptoms. Recent data from transcriptome analysis show that oral cavity mucosa harbors high levels of ACE2 and TMPRSS2, highlighting its role as a double-edged sword for SARS-CoV-2 body entrance or interpersonal transmission. In the present study, for the first time, we demonstrate the oral microbiota structure and inflammatory profile of COVID-19 patients. Hospitalized COVID-19 patients and matched healthy controls underwent naso/oral-pharyngeal and oral swabs. Microbiota structure was analyzed by 16S rRNA V2 automated targeted sequencing, while oral and sera concentrations of 27 cytokines were assessed using magnetic bead-based multiplex immunoassays. A significant diminution in species richness was observed in COVID-19 patients, along with a marked difference in beta-diversity. Species such as Prevotella salivae and Veillonella infantium were distinctive for COVID-19 patients, while Neisseria perflava and Granulicatella elegans were predominant in controls. Interestingly, these two groups of oral species oppositely clustered within the bacterial network, defining two distinct Species Interacting Group (SIGs). Pro-inflammatory cytokines were distinctive for COVID-19 in both oral and serum samples, and we found a specific bacterial consortium able to counteract them, following a novel index called C4 firstly proposed here. We even introduced a new parameter, named CytoCOV, able to predict COVID-19 susceptibility for an unknown subject at 71% of power with an AUC equal to 0.995. This pilot study evidenced a distinctive oral microbiota composition in COVID-19 subjects, with a definite structural network in relation to secreted cytokines. Our results would pave the way for a theranostic approach in fighting COVID-19, trying to enlighten the intimate relationship among microbiota and SARS-CoV-2 infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valerio Iebba ◽  
Nunzia Zanotta ◽  
Giuseppina Campisciano ◽  
Verena Zerbato ◽  
Stefano Di Bella ◽  
...  

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recently demonstrated in the sputum or saliva, suggesting how the shedding of viral RNA outlasts the end of symptoms. Recent data from transcriptome analysis show that the oral cavity mucosa harbors high levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), highlighting its role as a double-edged sword for SARS-CoV-2 body entrance or interpersonal transmission. Here, we studied the oral microbiota structure and inflammatory profile of 26 naive severe coronavirus disease 2019 (COVID-19) patients and 15 controls by 16S rRNA V2 automated targeted sequencing and magnetic bead-based multiplex immunoassays, respectively. A significant diminution in species richness was observed in COVID-19 patients, along with a marked difference in beta-diversity. Species such as Prevotella salivae and Veillonella infantium were distinctive for COVID-19 patients, while Neisseria perflava and Rothia mucilaginosa were predominant in controls. Interestingly, these two groups of oral species oppositely clustered within the bacterial network, defining two distinct Species Interacting Groups (SIGs). COVID-19-related pro-inflammatory cytokines were found in both oral and serum samples, along with a specific bacterial consortium able to counteract them. We introduced a new parameter, named CytoCOV, able to predict COVID-19 susceptibility for an unknown subject at 71% of power with an Area Under Curve (AUC) equal to 0.995. This pilot study evidenced a distinctive oral microbiota composition in COVID-19 subjects, with a definite structural network in relation to secreted cytokines. Our results would be usable in clinics against COVID-19, using bacterial consortia as biomarkers or to reduce local inflammation.


RSBO ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Eduardo Pizzatto ◽  
Nicolae Carvalho de Paula ◽  
Carolina Dea Bruzamolin ◽  
Paulo H. Tomazinho ◽  
Luciane Variani Pizzatto ◽  
...  

Introduction and Objective: Tooth decay is one of the most common chronic oral diseases found in industrial countries and is a multifactorial disease which has sugar as a key dietary factor. The amount of saliva concentration and presence of cariogenic bacteria will favor the development of caries. Because of this, the aim of this study was to collect and analyze data on oral alterations referred to tooth decay, oral pH changes, and changes of the oral microbiota in two distinct groups of workers. Material and methods: 30 individuals belonging to two different groups of workers: group A (GA) – workers who maintain daily contact with the confectionery; group B (GB) – workers who do not have such contact. Saliva collection was done by analysis of the salivary pH in both groups, as well as cultivation of Lactobacillus spp and S. mutans. We also evaluate the dental status of individuals belonging to the two groups through the DMFT index. Results: After the examinations of 30 workers (17 from the GA [9 men and 8 women] and 13 in the GB [7 men and 6 women]), the mean DMFT of the individuals in the group A and group B, was 7.41 (SD 5.14) 7.08 (SD 5.56), respectively, without statistically significant differences (p < 0.05). The count of S. mutans and Lactobacillus spp, was not statistically significant. Conclusion: There was no statistically significant relationship between presence of dental caries and the fact that workers are in contact with sugar because they work on candy food industry, but new studies are needed for more precise research.


Author(s):  
Ciro Gargiulo Isacco ◽  
Andrea Ballini ◽  
Danila De Vito ◽  
Kieu Cao Diem Nguyen ◽  
Stefania Cantore ◽  
...  

: The current treatment and prevention of oral disorders follow a very sectoral control and procedures considering mouth and its structures as system completely independent from the rest of the body. The main therapeutic approach is carried out on just to keep the levels of oral bacteria and hygiene in an acceptable range compatible with one-way vision of oral-mouth health completely separated from a systemic microbial homeostasis (eubiosis vs dysbiosis). This can negatively impact on the diagnosis of more complex systemic disease and its progression. Dysbiosis is consequence of oral and gut microbiota unbalance with consequences, as reported in current literature, in cardio vascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer’s disease. Likewise, there is the need to highlight and develop a novel philosophical approach in the treatments for oral diseases that will necessarily involve non-conventional approaches.


Beverages ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 7 ◽  
Author(s):  
Irene Zorraquín-Peña ◽  
Adelaida Esteban-Fernández ◽  
Dolores González de Llano ◽  
Begoña Bartolomé ◽  
M. Moreno-Arribas

Wine, and specifically red wine, is a beverage with a great chemical complexity comprising a particular combination of phenolic compounds which are directly associated with its health-promoting properties. Wine polyphenols could induce changes in the composition of intestinal microbiota that would affect the production of physiologically active phenolic metabolites modifying the content and phenolic profile at the systemic level. In addition, in the human population, it seems that different “metabotypes”, or patterns of metabolizing wine polyphenols, exist, which would be reflected in the different biological fluids (i.e., plasma, urine and feces) and tissues of the human body. Moreover, wine polyphenols might change the composition of oral microbiota by an antimicrobial action and/or by inhibition of the adhesion of pathogens to oral cells, thus contributing to the maintenance of oral health. In turn, polyphenols and/or its metabolites could have a direct action on brain function, by positively affecting signaling routes involved in stress-induced neuronal response, as well as by preventing neuroticism-like disorders (i.e., anxiety and depression) through anti-inflammatory and epigenetic mechanisms. All of this would condition the positive effects on health derived from moderate wine consumption. This paper reviews all these topics, which are directly related with the effects of wine polyphenols at both digestive and brain level. Further progresses expected in the coming years in these fields are also discussed.


Sign in / Sign up

Export Citation Format

Share Document