scholarly journals Photodynamic antimicrobial chemotherapy with the novel amino acid-porphyrin conjugate 4I: In vitro and in vivo studies

PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176529 ◽  
Author(s):  
Yao Yuan ◽  
Zi-Quan Liu ◽  
Heng Jin ◽  
Shi Sun ◽  
Tian-Jun Liu ◽  
...  
2005 ◽  
Vol 3 (3) ◽  
pp. 514-521 ◽  
Author(s):  
E. PERZBORN ◽  
J. STRASSBURGER ◽  
A. WILMEN ◽  
J. POHLMANN ◽  
S. ROEHRIG ◽  
...  

2003 ◽  
Vol 284 (1) ◽  
pp. H385-H392 ◽  
Author(s):  
John C. Teeters ◽  
Cauveh Erami ◽  
Hua Zhang ◽  
James E. Faber

Previous in vitro and in vivo studies have shown that norepinephrine, acting through α1A-adrenoceptors, stimulates hypertrophy, proliferation, and migration of vascular smooth muscle cells and adventitial fibroblasts and may contribute to neointimal growth, lumen loss, and inward remodeling caused by iatrogenic wall injury and vascular disease. Our present aim was to determine whether intravenous administration of the α1A-adrenoceptor antagonist KMD-3213, at dosages without systemic hemodynamic effects, inhibits wall growth after injury. Inhibition of α1A-adrenoceptors with 12.8 and 32 μg/kg KMD-3213 had no effect on arterial pressure or renal and hindquarter resistances in anesthetized rats. A second group then received carotid balloon injury and continuous intravenous KMD-3213 at 4 and 10 μg · kg−1 · h−1for 2 wk. Mean, systolic, and diastolic arterial pressures and heart rate of conscious unrestrained rats were unaffected. KMD-3213 reduced neointima growth by ∼30 and 46% at the two doses ( P< 0.01). These data support the novel hypothesis that a direct α1A-adrenoceptor-dependent trophic action of catecholamines is augmented by injury and may contribute significantly to hypertrophic vascular disease.


Author(s):  
Vinicius Cruzat ◽  
Marcelo Macedo Rogero ◽  
Kevin Noel Keane ◽  
Rui Curi ◽  
Philip Newsholme

Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g. ill/critically ill, post-trauma, sepsis, exhausted athletes) it is currently difficult to determine whether glutamine parenteral or enteral supplementation should be recommended based on the amino acid plasma concentration (glutaminemia). Although the beneficial immune based effects of glutamine supplementation is already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review on how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism, action and important issues related to the effects of glutamine supplementation in catabolic situations.


Perfusion ◽  
2002 ◽  
Vol 17 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Anja Gerdes ◽  
Thorsten Hanke ◽  
Hans-H Sievers

Background: Prevention of intraoperative plaque dislodgement in patients with atherosclerotic ascending aorta by development of innovative aortic cannula designs gains growing interest in cardiac surgery. To increase knowledge about the hydrodynamics of the innovative Embol-X™ cannula, which includes an intra-aortic filter device targeting at atheromatous emboli capture, was the aim of the present study. Methods: Pressure gradients and back pressures of the Embol-X™ cannula were measured at varying flow rates in a mock circulation and compared with two commonly used single-stream cannulae. Results: At a flow rate of 5.5 l/min, pressure gradients across the Argyle™ and the RMI cannulae were 48% and 62% and back pressures 25% and 47% lower than the corresponding values across the Embol-X™ cannula. Conclusions: The novel concept of integrating a filter device may provide clinical advantages concerning neurologic outcome. Further in vivo studies seem to be desirable to obtain more information concerning the clinical effects of the Embol-X™ cannula hydrodynamics.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1868-1868
Author(s):  
Tenzin Passang Fnu ◽  
Jianming Li ◽  
Sruthi Ravindranathan ◽  
Edmund K. Waller

Abstract Introduction: Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide with immunosuppressive effects on T cells. Inhibition of VIP receptor (VIP-R) signaling by VIPhyb, a first-generation VIP-R antagonist, not only enhances T-cell activation and proliferation in vitro but also improves T cell dependent anti-tumor response in mouse models of acute myeloid leukemia (AML) and T lymphoblastic leukemia (Li et al. 2016; Petersen, Li, and Waller 2017). The goal of the project is to develop more potent VIP-R antagonists that generate a significantly more robust anti-tumor response in mouse models of AML, when compared to VIPhyb and validate a screening method to test the efficacy of novel peptides in activating human T cells in vitro. In this study, we report, for the first time, the activity of novel VIP-R antagonists on the activation profile of human T cells. Methods: We utilized in-silico-based modeling to identify 10 novel VIP-R antagonists from a library of 300 peptide sequences predicted to have increased binding affinity to VIP receptors VPAC1 and VPAC2 when compared to VIP or VIPhyb (Table 1). The library was generated from peptide sequences that contain the six charged N-terminal residues of the neurotensin present in VIPhyb with two or more amino acid substitutions within the C-terminal amino acid sequence of VIP. The ability of these peptides was tested in vitro using T cells from multiple healthy human donors activated using anti-CD3 monoclonal antibody coated plates. Activation status was assessed by flow cytometry of CD69, OX40, PD1, Tim3 and Lag3 expression relative to control cultures without added peptides. Potency of the novel antagonists in vivo was tested in a mouse AML model, by treating C1498- bearing mice with subcutaneous administration of VIP, VIPhyb, scrambled peptide (SCRAM1) or the second-generation VIP-R antagonists (labeled as 'ANT') from day 6-12 after tumor implantation. Results: Inhibiting VIP-R signaling in human T cells using second-generation VIP-R antagonists ANT008, ANT308 and ANT195 showed approximately 1.5-to-2-fold increase in CD69, OX40, Tim3, Lag3 and OX40 expression in CD4+ T cells following 24-hour of drug exposure compared to control cultures (Figure 1A). A smaller effect of VIP-R antagonists on activation of CD8+ subsets was observed (Figure 1B). Among the peptides, ANT195 was superior to ANT008 and ANT308 which shows potency even at 1μM compared to 3μM for ANT008 and ANT308. However, significant increase in CD69 expression was observed in both CD4+ and CD8+ T cells in cultures treated with ANT308 (Figure 1 A&B, *p&lt;0.05). Viability of the T cells was not affected by incubation with the queried peptides (Data not shown). These data corresponded to in vivo activity of the novel VIP-R antagonists such as ANT308 and ANT195 which rendered 40% of mice leukemia-free at day 60 compared to only 5% long-term survival with VIPhyb (Figure 2). Another candidate, ANT300, increased median survival time (MST) by up to 47 days compared to MST of 34 days with VIPhyb (Figure 2). Conclusions: Here, we report a simple and robust in vitro method to screen for immune activity potential of novel second-generation VIP-R antagonists using human T cells. Preliminary screen shows VIP-R antagonists augment activation of both CD4+ and CD8+ T cells. Our results indicate that ANT308 and ANT195 are more potent VIP-R antagonists with enhanced activity in vitro (human) and in vivo (mouse) than VIPhyb and ANT008, which demonstrate lower predicted binding affinities to VPAC1 and VPAC2. Our study supports the hypothesis that higher predicted binding affinity to VPAC1 and/or VPAC2 is associated with enhanced activity in stimulating human T cells and promoting anti-leukemia activity in mice. Further mechanistic studies on how inhibition of VIP-R signaling augments T cell activation and function are underway. These novel antagonists can lead to peptide-based immunotherapy for the treatment of various liquid cancers. Clinical development of this novel concept will require appropriate pre-clinical pharmacokinetic and toxicology studies. Figure 1 Figure 1. Disclosures Waller: Cambium Oncology: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Verastem Oncology: Consultancy, Research Funding.


2002 ◽  
Vol 137 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Anna Rizzi ◽  
Daniela Rizzi ◽  
Giuliano Marzola ◽  
Domenico Regoli ◽  
Bjarne Due Larsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document