scholarly journals Delineation of the role of chromatin assembly and the Rtt101Mms1 E3 ubiquitin ligase in DNA damage checkpoint recovery in budding yeast

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180556 ◽  
Author(s):  
Li-Ting Diao ◽  
Chin-Chuan Chen ◽  
Briana Dennehey ◽  
Sangita Pal ◽  
Pingping Wang ◽  
...  
2015 ◽  
Vol 54 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Degui Wang ◽  
Yingxia Tian ◽  
Dong Wei ◽  
Yuhong Jing ◽  
Haitao Niu ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui-Ju Hsieh ◽  
Wei Zhang ◽  
Shu-Hong Lin ◽  
Wen-Hao Yang ◽  
Jun-Zhong Wang ◽  
...  

2017 ◽  
Vol 474 (18) ◽  
pp. 3075-3086 ◽  
Author(s):  
Nikhil Panicker ◽  
Valina L. Dawson ◽  
Ted M. Dawson

Monogenetic, familial forms of Parkinson's disease (PD) only account for 5–10% of the total number of PD cases, but analysis of the genes involved therein is invaluable to understanding PD-associated neurodegenerative signaling. One such gene, parkin, encodes a 465 amino acid E3 ubiquitin ligase. Of late, there has been considerable interest in the role of parkin signaling in PD and in identifying its putative substrates, as well as the elucidation of the mechanisms through which parkin itself is activated. Its dysfunction underlies both inherited and idiopathic PD-associated neurodegeneration. Here, we review recent literature that provides a model of activation of parkin in the setting of mitochondrial damage that involves PINK1 (PTEN-induced kinase-1) and phosphoubiquitin. We note that neuronal parkin is primarily a cytosolic protein (with various non-mitochondrial functions), and discuss potential cytosolic parkin activation mechanisms.


Cell Cycle ◽  
2010 ◽  
Vol 9 (16) ◽  
pp. 3373-3383 ◽  
Author(s):  
Matthew D. Wood ◽  
Yolanda Sanchez

2012 ◽  
Vol 197 (5) ◽  
pp. 625-641 ◽  
Author(s):  
Tatsuyuki Chiyoda ◽  
Naoyuki Sugiyama ◽  
Takatsune Shimizu ◽  
Hideaki Naoe ◽  
Yusuke Kobayashi ◽  
...  

In the mitotic exit network of budding yeast, Dbf2 kinase phosphorylates and regulates Cdc14 phosphatase. In contrast, no phosphatase substrates of LATS1/WARTS kinase, the mammalian equivalent of Dbf2, has been reported. To address this discrepancy, we performed phosphoproteomic screening using LATS1 kinase. Screening identified MYPT1 (myosin phosphatase–targeting subunit 1) as a new substrate for LATS1. LATS1 directly and preferentially phosphorylated serine 445 (S445) of MYPT1. An MYPT1 mutant (S445A) failed to dephosphorylate Thr 210 of PLK1 (pololike kinase 1), thereby activating PLK1. This suggests that LATS1 promotes MYPT1 to antagonize PLK1 activity. Consistent with this, LATS1-depleted HeLa cells or fibroblasts from LATS1 knockout mice showed increased PLK1 activity. We also found deoxyribonucleic acid (DNA) damage–induced LATS1 activation caused PLK1 suppression via the phosphorylation of MYPT1 S445. Furthermore, LATS1 knockdown cells showed reduced G2 checkpoint arrest after DNA damage. These results indicate that LATS1 phosphorylates a phosphatase as does the yeast Dbf2 and demonstrate a novel role of LATS1 in controlling PLK1 at the G2 DNA damage checkpoint.


2021 ◽  
Vol 220 (11) ◽  
Author(s):  
James L. Shen ◽  
Tina M. Fortier ◽  
Ruoxi Wang ◽  
Eric H. Baehrecke

Defects in autophagy cause problems in metabolism, development, and disease. The autophagic clearance of mitochondria, mitophagy, is impaired by the loss of Vps13D. Here, we discover that Vps13D regulates mitophagy in a pathway that depends on the core autophagy machinery by regulating Atg8a and ubiquitin localization. This process is Pink1 dependent, with loss of pink1 having similar autophagy and mitochondrial defects as loss of vps13d. The role of Pink1 has largely been studied in tandem with Park/Parkin, an E3 ubiquitin ligase that is widely considered to be crucial in Pink1-dependent mitophagy. Surprisingly, we find that loss of park does not exhibit the same autophagy and mitochondrial deficiencies as vps13d and pink1 mutant cells and contributes to mitochondrial clearance through a pathway that is parallel to vps13d. These findings provide a Park-independent pathway for Pink1-regulated mitophagy and help to explain how Vps13D regulates autophagy and mitochondrial morphology and contributes to neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document