scholarly journals Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186985 ◽  
Author(s):  
Yajuan Sun ◽  
Jiajun Chen ◽  
Jia Li ◽  
Yawei Xu ◽  
Hui Jin ◽  
...  
Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Zhijian Yi ◽  
Jean de Dieu Habimana ◽  
Omar Mukama ◽  
Zhiyuan Li ◽  
Nelson Odiwuor ◽  
...  

Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to a global pandemic with a high spread rate and pathogenicity. Thus, with limited testing solutions, it is imperative to develop early-stage diagnostics for rapid and accurate detection of SARS-CoV-2 to contain the rapid transmission of the ongoing COVID-19 pandemic. In this regard, there remains little knowledge about the integration of the CRISPR collateral cleavage mechanism in the lateral flow assay and fluorophotometer. In the current study, we demonstrate a CRISPR/Cas12a-based collateral cleavage method for COVID-19 diagnosis using the Cas12a/crRNA complex for target recognition, reverse transcription loop-mediated isothermal amplification (RT-LAMP) for sensitivity enhancement, and a novel DNA capture probe-based lateral flow strip (LFS) or real-time fluorescence detector as the parallel system readout facility, termed CRICOLAP. Our novel approach uses a customized reporter that hybridizes an optimized complementary capture probe fixed at the test line for naked-eye result readout. The CRICOLAP system achieved ultra-sensitivity of 1 copy/µL in ~32 min by portable real-time fluorescence detection and ~60 min by LFS. Furthermore, CRICOLAP validation using 60 clinical nasopharyngeal samples previously verified with a commercial RT-PCR kit showed 97.5% and 100% sensitivity for S and N genes, respectively, and 100% specificity for both genes of SARS-CoV-2. CRICOLAP advances the CRISPR/Cas12a collateral cleavage result readout in the lateral flow assay and fluorophotometer, and it can be an alternative method for the decentralized field-deployable diagnosis of COVID-19 in remote and limited-resource locations.


Nanoscale ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 795-807 ◽  
Author(s):  
Chongwen Wang ◽  
Wanzhu Shen ◽  
Zhen Rong ◽  
Xiaoxian Liu ◽  
Bing Gu ◽  
...  

A highly sensitive and quantitative fluorescent lateral flow strip is proposed for bacterial detection by using novel magnetic-core@dual QD-shell nanoparticles as multifunctional fluorescent labels.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3358
Author(s):  
Donato Calabria ◽  
Maria Maddalena Calabretta ◽  
Martina Zangheri ◽  
Elisa Marchegiani ◽  
Ilaria Trozzi ◽  
...  

Paper-based lateral-flow immunoassays (LFIAs) have achieved considerable commercial success and their impact in diagnostics is continuously growing. LFIA results are often obtained by visualizing by the naked eye color changes in given areas, providing a qualitative information about the presence/absence of the target analyte in the sample. However, this platform has the potential to provide ultrasensitive quantitative analysis for several applications. Indeed, LFIA is based on well-established immunological techniques, which have known in the last year great advances due to the combination of highly sensitive tracers, innovative signal amplification strategies and last-generation instrumental detectors. All these available progresses can be applied also to the LFIA platform by adapting them to a portable and miniaturized format. This possibility opens countless strategies for definitively turning the LFIA technique into an ultrasensitive quantitative method. Among the different proposals for achieving this goal, the use of enzyme-based immunoassay is very well known and widespread for routine analysis and it can represent a valid approach for improving LFIA performances. Several examples have been recently reported in literature exploiting enzymes properties and features for obtaining significative advances in this field. In this review, we aim to provide a critical overview of the recent progresses in highly sensitive LFIA detection technologies, involving the exploitation of enzyme-based amplification strategies. The features and applications of the technologies, along with future developments and challenges, are also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 768
Author(s):  
Hyung-Mo Kim ◽  
Chiwoo Oh ◽  
Jaehyun An ◽  
Seungki Baek ◽  
Sungje Bock ◽  
...  

Exosomes are attracting attention as new biomarkers for monitoring the diagnosis and prognosis of certain diseases. Colorimetric-based lateral-flow assays have been previously used to detect exosomes, but these have the disadvantage of a high limit of detection. Here, we introduce a new technique to improve exosome detection. In our approach, highly bright multi-quantum dots embedded in silica-encapsulated nanoparticles (M–QD–SNs), which have uniform size and are brighter than single quantum dots, were applied to the lateral flow immunoassay method to sensitively detect exosomes. Anti-CD63 antibodies were introduced on the surface of the M–QD–SNs, and a lateral flow immunoassay with the M–QD–SNs was conducted to detect human foreskin fibroblast (HFF) exosomes. Exosome samples included a wide range of concentrations from 100 to 1000 exosomes/µL, and the detection limit of our newly designed system was 117.94 exosome/μL, which was 11 times lower than the previously reported limits. Additionally, exosomes were selectively detected relative to the negative controls, liposomes, and newborn calf serum, confirming that this method prevented non-specific binding. Thus, our study demonstrates that highly sensitive and quantitative exosome detection can be conducted quickly and accurately by using lateral immunochromatographic analysis with M–QD–SNs.


2021 ◽  
Author(s):  
Vasily G. Panferov ◽  
Shyatesa C. Razo ◽  
Irina V. Safenkova ◽  
Anatoly V. Zherdev ◽  
Boris B. Dzantiev

Nanoscale ◽  
2021 ◽  
Author(s):  
F. Mousseau ◽  
C. Féraudet Tarisse ◽  
S. Simon ◽  
T. Gacoin ◽  
A. Alexandrou ◽  
...  

We developed a portable, fast, highly sensitive and quantitative in vitro assay for on-site biomolecule detection by combining the remarkable optical properties of new lanthanide-doped nanoparticle probes with a simple reader coupled to a smartphone.


Sign in / Sign up

Export Citation Format

Share Document