scholarly journals Oxytocin alters cell fate selection of rat neural progenitor cells in vitro

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0191160 ◽  
Author(s):  
Arvind Palanisamy ◽  
Ramaswamy Kannappan ◽  
Zhiqiang Xu ◽  
Audrey Martino ◽  
Matthew B. Friese ◽  
...  
Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2593-2606 ◽  
Author(s):  
M. Handler ◽  
X. Yang ◽  
J. Shen

Mutations in Presenilin-1 (PS1) are a major cause of familial Alzheimer's disease. Our previous studies showed that PS1 is required for murine neural development. Here we report that lack of PS1 leads to premature differentiation of neural progenitor cells, indicating a role for PS1 in a cell fate decision between postmitotic neurons and neural progenitor cells. Neural proliferation and apoptotic cell death during neurogenesis are unaltered in PS1(−/−) mice, suggesting that the reduction in the neural progenitor cells observed in the PS1(−/−) brain is due to premature differentiation of progenitor cells, rather than to increased apoptotic cell death or decreased cell proliferation. In addition, the premature neuronal differentiation in the PS1(−/−) brain is associated with aberrant neuronal migration and disorganization of the laminar architecture of the developing cerebral hemisphere. In the ventricular zone of PS1(−/−) mice, expression of the Notch1 downstream effector gene Hes5 is reduced and expression of the Notch1 ligand Dll1 is elevated, whereas expression of Notch1 is unchanged. The level of Dll1 transcripts is also increased in the presomitic mesoderm of PS1(−/−) embryos, while the level of Notch1 transcripts is unchanged, in contrast to a previous report (Wong et al., 1997, Nature 387, 288–292). These results provide direct evidence that PS1 controls neuronal differentiation in association with the downregulation of Notch signalling during neurogenesis.


2019 ◽  
Vol 30 (5) ◽  
pp. 3030-3043 ◽  
Author(s):  
Runxiang Qiu ◽  
Qiu Runxiang ◽  
Anqi Geng ◽  
Jiancheng Liu ◽  
C Wilson Xu ◽  
...  

Abstract Balanced proliferation and differentiation of neural progenitor cells (NPCs) are critical for brain development, but how the process is regulated and what components of the cell division machinery is involved are not well understood. Here we report that SEPT7, a cell division regulator originally identified in Saccharomyces cerevisiae, interacts with KIF20A in the intercellular bridge of dividing NPCs and plays an essential role in maintaining the proliferative state of NPCs during cortical development. Knockdown of SEPT7 in NPCs results in displacement of KIF20A from the midbody and early neuronal differentiation. NPC-specific inducible knockout of Sept7 causes early cell cycle exit, precocious neuronal differentiation, and ventriculomegaly in the cortex, but surprisingly does not lead to noticeable cytokinesis defect. Our data uncover an interaction of SEPT7 and KIF20A during NPC divisions and demonstrate a crucial role of SEPT7 in cell fate determination. In addition, this study presents a functional approach for identifying additional cell fate regulators of the mammalian brain.


1999 ◽  
Vol 158 (2) ◽  
pp. 265-278 ◽  
Author(s):  
Melissa K. Carpenter ◽  
Xia Cui ◽  
Zhong-yi Hu ◽  
Jennifer Jackson ◽  
Sandy Sherman ◽  
...  

2016 ◽  
Vol 91 (2) ◽  
pp. 827-837 ◽  
Author(s):  
Marta Barenys ◽  
Kathrin Gassmann ◽  
Christine Baksmeier ◽  
Sabrina Heinz ◽  
Ingrid Reverte ◽  
...  

2015 ◽  
Vol 39 (6) ◽  
pp. 750-758 ◽  
Author(s):  
Hui Ding ◽  
Guo-Hua Jin ◽  
Lin-Qing Zou ◽  
Xiao-Qing Zhang ◽  
Hao-Ming Li ◽  
...  

Author(s):  
Nicholas D Allen

The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.


Sign in / Sign up

Export Citation Format

Share Document