scholarly journals Present-day monitoring underestimates the risk of exposure to pathogenic bacteria from cold water storage tanks

PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0195635 ◽  
Author(s):  
Aji Peter ◽  
Edwin Routledge
2019 ◽  
Vol 4 (1) ◽  
pp. 55-64
Author(s):  
Hafizt Azzari Aldaf ◽  
Indyah Hartami Santi ◽  
Yusniarsi Primasari

Nowdays, The development of water dispensers has hot and cold water technology, but fills water into cold and hot water storage tanks by lifting and putting the gallons on top of the dispenser so that water can flow into hot and cold water storage tanks, this is assessed less efficient. The purpose of making this tool is to make it easier for users to install gallons without having to lift the gallon and put it on top of the reservoir, it can also facilitate the taking of drinking water without having to press or open the faucet first. Because in modern era, the need for tools that work automatically and efficiently are increasing. The results of this study indicate that automatic water and faucet filler devices in dispensers using ultrasonic sensors as a whole work well and are in accordance with the function specified. The function of the ultrasonic sensor is as a reader the maximum limit of water level in the reservoir, so that when the water is in its maximum state, the pump will stop filling the reservoir. And the ultrasonic sensor in front of the dispenser functions to read the glass, the sensor will detect and then be received by the microcontroller and continue to execute the relay and open the selenoid so that the water can come out.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Musa Manga ◽  
Timothy G. Ngobi ◽  
Lawrence Okeny ◽  
Pamela Acheng ◽  
Hidaya Namakula ◽  
...  

Abstract Background Household water storage remains a necessity in many communities worldwide, especially in the developing countries. Water storage often using tanks/vessels is envisaged to be a source of water contamination, along with related user practices. Several studies have investigated this phenomenon, albeit in isolation. This study aimed at developing a systematic review, focusing on the impacts of water storage tank/vessel features and user practices on water quality. Methods Database searches for relevant peer-reviewed papers and grey literature were done. A systematic criterion was set for the selection of publications and after scrutinizing 1106 records, 24 were selected. These were further subjected to a quality appraisal, and data was extracted from them to complete the review. Results and discussion Microbiological and physicochemical parameters were the basis for measuring water quality in storage tanks or vessels. Water storage tank/vessel material and retention time had the highest effect on stored water quality along with age, colour, design, and location. Water storage tank/vessel cleaning and hygiene practices like tank/vessel covering were the user practices most investigated by researchers in the literature reviewed and they were seen to have an impact on stored water quality. Conclusions There is evidence in the literature that storage tanks/vessels, and user practices affect water quality. Little is known about the optimal tank/vessel cleaning frequency to ensure safe drinking water quality. More research is required to conclusively determine the best matrix of tank/vessel features and user practices to ensure good water quality.


Energy ◽  
1991 ◽  
Vol 16 (7) ◽  
pp. 977-982 ◽  
Author(s):  
K. Hariharan ◽  
K. Badrinarayana ◽  
S. Srinivasa Murthy ◽  
M.V. Krishna Murthy

2021 ◽  
Author(s):  
Raj Lahoti

Abstract Getting correct estimates for Volatile Organic Compounds (VOCs) and greenhouse gases (GHGs) from water storage tanks is not only important for maintaining emission compliance for state and national regulatory authorities, but also crucial in designing the capital-intensive systems for economic use of methane and other Natural Gas Liquid (NGL) gasses. This paper highlights the significance of gas liberated from produced water tanks in the fields. The paper presents a laboratory method to estimate such emissions from produced-water storage tanks by virtue of the in-situ water getting depressurized and releasing VOCs, and other emission gasses such as Hydrogen Sulfide (H2S) and Carbon Dioxide (CO2). Further, the paper provides qualitative and quantitative assessment of the gas liberated from produced-water by analyzing the gas liberated from produced-water from gas-condensate reservoir wells from the Marcellus region.


Sign in / Sign up

Export Citation Format

Share Document