scholarly journals Potential effects of climate change on dengue transmission dynamics in Korea

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199205 ◽  
Author(s):  
Hyojung Lee ◽  
Jung Eun Kim ◽  
Sunmi Lee ◽  
Chang Hyeong Lee
Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 781
Author(s):  
Jung Kim ◽  
Yongin Choi ◽  
James Kim ◽  
Sunmi Lee ◽  
Chang Lee

Dengue fever has been a threat to public health not only in tropical regions but non-tropical regions due to recent climate change. Motivated by a recent dengue outbreak in Japan, we develop a two-patch model for dengue transmission associated with temperature-dependent parameters. The two patches represent a park area where mosquitoes prevail and a residential area where people live. Based on climate change scenarios, we investigate the dengue transmission dynamics between the patches. We employ an optimal control method to implement proper control measures in the two-patch model. We find that blockage between two patches for a short-term period is effective in a certain degree for the disease control, but to obtain a significant control effect of the disease, a long-term blockage should be implemented. Moreover, the control strategies such as vector control and transmission control are very effective, if they are implemented right before the summer outbreak. We also investigate the cost-effectiveness of control strategies such as vaccination, vector control and virus transmission control. We find that vector control and virus transmission control are more cost-effective than vaccination in case of Korea.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Xiao-Yan Zhao ◽  
Shu-Min Guo ◽  
Mini Ghosh ◽  
Xue-Zhi Li

The growing number of reported avian influenza cases has prompted awareness of the importance of research methods to control the spread of the disease. Seasonal variation is one of the important factors that affect the spread of avian influenza. This paper presents a “nonautonomous” model to analyze the transmission dynamics of avian influenza with the effects of climate change. We obtain and discuss the global stability conditions of the disease-free equilibrium; the threshold conditions for persistence, permanence, and extinction of the disease; and the parameters with periodicity for controlling and eliminating the avian influenza.


2016 ◽  
Vol 144 (14) ◽  
pp. 3091-3100 ◽  
Author(s):  
C. R. WILLIAMS ◽  
G. MINCHAM ◽  
H. FADDY ◽  
E. VIENNET ◽  
S. A. RITCHIE ◽  
...  

SUMMARYDengue is the world's most prevalent mosquito-borne disease, with more than 200 million people each year becoming infected. We used a mechanistic virus transmission model to determine whether climate warming would change dengue transmission in Australia. Using two climate models each with two carbon emission scenarios, we calculated future dengue epidemic potential for the period 2046–2064. Using the ECHAM5 model, decreased dengue transmission was predicted under the A2 carbon emission scenario, whereas some increases are likely under the B1 scenario. Dengue epidemic potential may decrease under climate warming due to mosquito breeding sites becoming drier and mosquito survivorship declining. These results contradict most previous studies that use correlative models to show increased dengue transmission under climate warming. Dengue epidemiology is determined by a complex interplay between climatic, human host, and pathogen factors. It is therefore naive to assume a simple relationship between climate and incidence, and incorrect to state that climate warming will uniformly increase dengue transmission, although in general the health impacts of climate change will be negative.


2021 ◽  
Vol 4 (1) ◽  
pp. 65-80
Author(s):  
Meksianis Z. Ndii

Strategies for reducing dengue incidence are by minimizing the contact between mosquitoes and human or the use of vaccine. However, the candidate of dengue is not perfect and potentially results in more secondary infection cases.This leads to the question which strategy should be decided by individuals to reduce the chance for being infected by dengue. A game-dynamic modeling framework by coupling epidemic and behavior model has been constructed to study the effects of human decision making behavior on dengue transmission dynamics. We also consider strategies as time-dependent controls and estimate the parameter values against data of dengue incidence in Kupang city, Indonesia. Parameter estimation gives the reproduction number of 1.17 which indicates the possibility of outbreak occurrence. When the efficacy of reduced contact with mosquitoes is low, the use of vaccination is the best option to reduce dengue incidence. The efficacy of reduced contact with mosquitoes should be at high level to get higher reduction in dengue incidence if no vaccine is available yet. An optimal control approach suggests that a higher level of vaccination rate and the reduced contact with mosquitoes is required to reach optimal reduction in dengue incidence. However, solutions from epidemiological-behavior model showed that individuals are likely to choose one strategy only which has higher cost and the probability of perceived efficacy. The implementation of vaccination helps in reducing dengue incidence. However, understanding the effects of dengue vaccine on secondary infections is required before the delivery of such intervention.


EBioMedicine ◽  
2016 ◽  
Vol 7 ◽  
pp. 267-277 ◽  
Author(s):  
Jing Liu-Helmersson ◽  
Mikkel Quam ◽  
Annelies Wilder-Smith ◽  
Hans Stenlund ◽  
Kristie Ebi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document