scholarly journals A microbial-based cancer vaccine for induction of EGFRvIII-specific CD8+ T cells and anti-tumor immunity

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0209153 ◽  
Author(s):  
Lauren Zebertavage ◽  
Shelly Bambina ◽  
Jessica Shugart ◽  
Alejandro Alice ◽  
Kyra D. Zens ◽  
...  
Author(s):  
Qiang Shan ◽  
Sheng’en Hu ◽  
Xia Chen ◽  
Derek B. Danahy ◽  
Vladimir P. Badovinac ◽  
...  
Keyword(s):  
T Cells ◽  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A570-A570
Author(s):  
Chen Zhao ◽  
Matthew Mule ◽  
Andrew Martins ◽  
Iago Pinal Fernandez ◽  
Renee Donahue ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) have changed the cancer treatment landscape, but immune-related adverse events (irAEs) can affect a wide range of tissues in patients receiving ICIs. Severe irAEs can be life-threatening or fatal and prohibit patients from receiving further ICI treatment. While the clinical features of irAEs are well documented, the pathological mechanisms and predictive biomarkers are largely unknown. In addition, there is a critical need to preserve ICI-induced anti-tumor immunity while controlling for irAEs, which requires deciphering molecular and cellular signatures associated specifically with irAEs beyond those more generally linked to anti-tumor immunity.MethodsTo unbiasedly identify immune cells and states associated with irAEs, we applied CITE-seq to measure transcripts and surface proteins (83 protein markers) from PBMCs collected from patients with thymic epithelial tumors before and after treatment with an anti-PD-L1 antibody (avelumab, NCT01772004, NCT03076554).ResultsSamples from 9 patients were analyzed. No patient had a history of pre-existing paraneoplastic autoimmune disease. Anti-tumor activity was observed in all cases, and 5 patients had clinical and/or biochemical evidence of immune-related muscle inflammation (myositis with or without myocarditis). Multilevel models applied within highly resolved cell clusters revealed transcriptional states associated with ICI response and more uniquely with irAEs. A total of 190,000 cells were included in the analysis after quality control. Most notably, CD45RA+ effector memory CD8 T cells with an mTOR transcriptional signature were highly enriched at baseline and post treatment in patients with irAEs.ConclusionsOur findings suggest the potential therapeutic avenues by using mTOR inhibitors to dampen autoimmune responses while potentially sparing anti-tumor activity, to prevent treatment discontinuation and improve clinical outcomes for cancer patients treated with ICIs.AcknowledgementsThis research was supported in part by the Intramural Research Program of the NCI (the Center for Cancer Research), NIAID and NIAMS, and through a Cooperative Research and Development Agreement between the National Cancer Institute and EMD Serono.Trial RegistrationNCT01772004, NCT03076554Ethics ApprovalThis study is approved by NCI institutional review board.


2016 ◽  
Vol 01 (01) ◽  

Backgrounds: Many studies show an immune imbalance in the tumor environment; some reports show that the T helper 1 (Th1)/ T helper 2 (Th2) ratio, the number of regulatory T-cells (Treg cells) or CD8+T-cells, and the CD8+Tcell/Treg cell ratio are associated with tumor suppression and expansion. Additionally, chemotherapy was reported to affect the immunity of patients with malignancy. Patients and Methods: Using flow cytometry we measured peripheral blood lymphocytes including non T-cells, as well as T-cell subsets such as CD3+T-cells, CD4+T-cells, CD8+T-cells, Treg cells, Th1 cells and Th2 cells before treatment, at the fourth cycle, and at 1, 3, 6 and 12 months after treatment in 21 patients with B-cell lymphoma receiving R-CHOP therapy. We also analyzed the changes in three immune indexes that reflect anti-tumor immunity (the CD4/CD8 ratio, the CD8/Treg ratio and the Th1/Th2 ratio). Results: Compared to pre-treatment there were significant decreases in the CD4/CD8 ratio between 1 month and 12 months after treatment (p<0.001, for all time points). The CD8/Treg ratio gradually increased with treatment with significant increases observed at 6 months (p=0.009) and 12 months after treatment (p=0.002). The Th1/ Th2 ratio showed a significant increase only before 4 cycles of therapy (p=0.007). Conclusion: Based on the changes in these three immune indexes, we propose that anti-tumor immunity improved after R-CHOP therapy, which enhanced the efficacy of R-CHOP therapy for lymphoma as well as its direct cytotoxic activity


2017 ◽  
Vol 137 (10) ◽  
pp. S249
Author(s):  
Y. Sato ◽  
M. Matsui-Watanabe ◽  
M. Matsumoto ◽  
D.R. Sharda ◽  
K. Igarashi ◽  
...  

2005 ◽  
Vol 202 (7) ◽  
pp. 885-891 ◽  
Author(s):  
Kuibeom Ko ◽  
Sayuri Yamazaki ◽  
Kyoko Nakamura ◽  
Tomohisa Nishioka ◽  
Keiji Hirota ◽  
...  

T cell stimulation via glucocorticoid-induced tumor necrosis factor receptor family–related protein (GITR) can evoke effective tumor immunity. A single administration of agonistic anti-GITR monoclonal antibody (mAb) to tumor-bearing mice intravenously or directly into tumors provoked potent tumor-specific immunity and eradicated established tumors without eliciting overt autoimmune disease. A large number of CD4+ and CD8+ T cells, including interferon (IFN)-γ–secreting cells, infiltrated regressing tumors. Tumor-specific IFN-γ–secreting CD4+ and CD8+ T cells also increased in the spleen. The treatment led to tumor rejection in IFN-γ–intact mice but not IFN-γ–deficient mice. Furthermore, coadministration of anti-GITR and anti–CTLA-4 mAbs had a synergistic effect, leading to eradication of more advanced tumors. In contrast, coadministration of anti-CD25 and anti-GITR mAbs was less effective than anti-GITR treatment alone, because anti-CD25 depleted both CD25+-activated effector T cells and CD25+CD4+ naturally occurring regulatory T (T reg) cells. Importantly, CD4+ T cells expressing the T reg–specific transcription factor Foxp3 predominantly infiltrated growing tumors in control mice, indicating that tumor-infiltrating natural Foxp3+CD25+CD4+ T reg cells may hamper the development of effective tumor immunity. Taken together, T cell stimulation through GITR attenuates T reg–mediated suppression or enhances tumor-killing by CD4+ and CD8+ effector T cells, including those secreting IFN-γ, or both. Agonistic anti-GITR mAb is therefore instrumental in treating advanced cancers.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A479-A479
Author(s):  
Matteo Rossi ◽  
Elodie Belnoue ◽  
Susanna Carboni ◽  
Wilma Besson-Di Berardino ◽  
Erika Riva ◽  
...  

BackgroundKISIMATM platform allows the development of protein-based cancer vaccines able to induce a potent, tumor-specific CD8 and CD4 T cells response. While the cell penetrating peptide and the Anaxa portions confer, respectively, the cell delivery and self-adjuvanticity properties, the multiantigenic domain allows the targeting of different cancer antigens, resulting in anti-tumoral efficacy in different murine models.1 The first clinical candidate developed from KISIMATM is currently tested, together with anti-PD-1 blockade, in a phase I study in metastatic colorectal cancer patients. Stimulator of interferon genes agonists (STINGa) were shown to induce a potent type I interferon response in preclinical studies. The intratumoral administration of STINGa, to promote tumor inflammation, was shown to result in a protective spontaneous immune response in several murine tumor models. However, the encouraging preclinical results are not supported by recent clinical data, challenging the efficacy of unspecific monotherapy.As it is more and more clear that an effective cancer immunotherapy will require the combination of different treatment strategies, we investigate here the efficacy of combining KISIMATM cancer vaccine with STINGa treatment.MethodsMice were vaccinated with subcutaneous (s.c.) injection of KISIMATM vaccine combined with s.c. administration of STINGa. Safety and immunogenicity were assessed by measuring temperature, serum cytokines and the peripheral antigen-specific response. Anti-tumoral efficacy as well as in depth monitoring of TILs and tumor microenvironment modulation were assessed following therapeutic vaccination in a HPV16 E6 and E7 expressing TC-1 cold tumor model.ResultsCombination treatment was well tolerated and promoted the development of circulating antigen-specific CD8 T cells. In TC-1 tumor bearing mice, KISIMATM therapeutic vaccination resulted in the infiltration of both antigen-specific CD8 and CD4 T cells within the tumor, as well as a switch of tumor associated macrophages polarization toward the more inflammatory type 1. Combination therapy further increased the tumor microenvironment modulation induced by KISIMATM vaccine, promoting the polarization of inflammatory Thelper 1 CD4 T cells and increasing the effector function of antigen-specific CD8 T cells. The profound modulation of the tumor microenvironment induced by combination therapy enhanced the beneficial effect of KISIMATM vaccination, resulting in a prolonged tumor control.ConclusionsCombination of KISIMATM cancer vaccine with systemic STINGa treatment induces the development of a potent, tumor-specific immune response resulting in a profound modulation of the TME. As check-point inhibitor (CPI) therapy is ineffective on poorly infiltrated tumors, combination with therapies able to highly enhance tumor infiltration by T cells could expand CPI indications.Ethics ApprovalThe study was approved by the Canton of Geneva Ethic Board, under the license number GE165/19ReferenceBelnoue E, et al. Targeting self and neo-epitopes with a modular self-adjuvanting cancer vaccine. JCI Insight 2019. 4:11.


2019 ◽  
Vol 139 (7) ◽  
pp. 1535-1544.e1 ◽  
Author(s):  
Tadahiro Kobayashi ◽  
Kyosuke Oishi ◽  
Ai Okamura ◽  
Shintaro Maeda ◽  
Akito Komuro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document