scholarly journals LncRNA expression profile and ceRNA analysis in tomato during flowering

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0210650 ◽  
Author(s):  
Zhenchao Yang ◽  
Chengcheng Yang ◽  
Zhengyan Wang ◽  
Zhao Yang ◽  
Danyan Chen ◽  
...  
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1397-1397 ◽  
Author(s):  
Marina Diaz-Beya ◽  
Alfons Navarro ◽  
Anna Cordeiro ◽  
Marta Pratcorona ◽  
Joan Castellano ◽  
...  

Abstract Introduction: Long non-coding RNAs (lncRNAs) have recently emerged as important actors in the regulation of multiple cellular processes including cancer. Acute myeloid leukemia (AML) is a heterogeneous disease; most of the main cytogenetic AML subgroups harbor a specific gene expression profile. AML with translocation t(8;16)(p11;p13) (t(8;16) AML) is a subtype with specific clinical and biological characteristics including a distinctive gene (Camós et al, Cancer Research 2006) and microRNA (Díaz-Beyá et al, Leukemia 2013) expression profile. In this translocation, MYST3 on chromosome 8p11 fuses with CREBBP on chromosome 16p13.3. The MYST3-CREBBP fusion protein is able to interact with multiple transcription factors (TF) producing a disturbed transcriptional program. However, the lncRNA expression pattern of different cytogenetic AML subtypes, including t(8;16) AML, have not been described yet. Aims: To examine the expression profile of lncRNAs within different AML subtypes, and to characterize the expression pattern of lncRNAs in t(8;16) AML in comparison to other AML subtypes. Patients and Methods: 46 AML patients, 4 normal bone marrow (NBM) and 3 CD34+ NBM samples were included in the study. Samples included different AML subtypes: intermediate-risk cytogenetic AML (IR-AML, n=18), t(15;17) (APL, n=4), t(8;21) AML (n=4), inv(16) AML(n=2), t(6;9) AML (n=7), AML with monosomal karyotype (n=4), t(3;3) AML (n=1), t(9;11) AML (n=1) and t(8;16) AML (n=5). Within IR-AML patients with a different mutational profile: FLT3-ITD (n=7), NPM1 (n=5), CEBPA (n=7) and DNMT3A (n=6) were included. The lncRNA expression was studied using Affymetrix® Human Gene 2.1 ST platform which includes 9698 lncRNAs transcripts. The filtering and normalization of the array data was performed using oligo package from Bioconductor. Statistical analyses were performed with TiGR MultiExperiment Viewer, BRB tools and R. The Transcription factor Affinity Prediction Web Tool was used to determine the putative transcription factors binding to the differentially expressed lncRNAs promoters. Results: The hierarchical cluster analysis showed that all 4 NBM as well as all 3 CD34+ NBM clustered together according to their lncRNA expression. Interestingly, all 5 t(8;16) AML samples clustered together, as well as the 3 APL, the 7 t(6;9) AML and 5 out of 7 cases with CEBPA mutations. The specific lncRNA signature of APL was composed of 79 differentially expressed lncRNA and t(6;9) AML lncRNA signature comprised of 15 differentially expressed lncRNAs. When we focused on t(8;16) AML lncRNA profile, we identified an specific 113-lncRNA signature in the supervised analysis (Figure). Interestingly, when we analyzed which (TF) had motifs overrepresented in the promoters regions of the t(8;16) AML lncRNA signature, we identified GATA2 as the TF with significantly overrepresented motifs for GATA2 (p<0.001). Interestingly, levels of GATA2 were differentially expressed in t(8;16) AML samples in comparison with other AMLs samples (p<0.001). GATA2 has been described to interact with CREBBP, one of the partners involved in t(8;16) AML. Of note, 4 overexpressed lncRNAs of the signature (linc-HOXA11, HOXA11-AS, HOTTIP and NR_038120) were located in the HOXA genomic region, previously found upregulated in t(8:16) AML. Since several studies suggest an active crosstalk between microRNAs and lncRNAs, we also correlated the expression of these lncRNAs with the microRNA t(8;16) AML profile. We found significant correlation between linc-HOXA11 and miR-222* (R2 =0.996, p=0.003), HOXA11-AS and miR-let-7c (R2=0.994, p=0.006), HOTTIP and miR-196b*(R2=0.958, p=0.041), and NR_038120 with miR-486-3p (R2=0.999, p=0.0004) and miR-19a (R2=0.953, p=0.04). Conclusions: LncRNAs expression profile seems specific of several AML subtypes, including t(8;16) AML. Some of the lncRNAs of this distinctive signature in t(8;16) AML are located in the HOXA genomic region, and correlate with several of the characteristic microRNAs previously described in this entity. Interestingly, we have predicted in silico GATA2, which interacts with CREBBP, as the most significant TF that could potentially regulate this lncRNAs signature. Nonetheless, further investigation is warranted to determine the mechanisms leading to this lncRNA signature and to identify the specific targets of these lncRNAs. Río Hortega CM13/00205, FIS PI13/00999 Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 39 (12) ◽  
pp. 2272-2280
Author(s):  
Xiaohong Lei ◽  
Ailing Qing ◽  
Xuemei Yuan ◽  
Delu Qiu ◽  
Haiyu Li

2019 ◽  
Vol 89 (3) ◽  
pp. 455-463 ◽  
Author(s):  
Hao Liu ◽  
Yiping Huang ◽  
Yingying Zhang ◽  
Yineng Han ◽  
Yixin Zhang ◽  
...  

ABSTRACT Objectives: To investigate the long noncoding RNA (lncRNA) expression profile of cementoblasts under compressive force. Materials and Methods: Mouse cementoblasts were exposed to compression (1.5 g/cm2) for 8 hours. RNA sequencing (RNA-seq) was performed to compare the transcriptomes of the compressed and control cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate five of the differentially expressed lncRNAs of interest. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also performed. Results: A total of 70 lncRNAs and 521 mRNAs were differentially regulated in cementoblasts subjected to compressive loading. Among the differentially expressed lncRNAs, 57 were upregulated and 13 downregulated. The expression levels of the five selected lncRNAs (Prkcz2, Hklos, Trp53cor1, Gdap10, and Ak312-ps) were validated by qRT-PCR and consistent with the RNA-seq results. GO functional annotation demonstrated upregulation of genes associated with cellular response to hypoxia and apoptotic processes during compressive loading. KEGG analysis identified the crucial pathways involving the hypoxia-inducing factor-1α, forkhead box O, and mammalian target of rapamycin signaling pathways. Conclusions: Mechanical compression changes the lncRNA expression profile of cementoblasts, providing important references for further investigation into the role and regulation of lncRNAs in compressed cementoblasts and root resorption during orthodontic treatment.


2020 ◽  
Vol 42 (5) ◽  
pp. 661-668
Author(s):  
Shaodi Yan ◽  
Xiaojing Liu ◽  
Xiao Ke ◽  
Zhanchao Xian ◽  
Changnong Peng ◽  
...  

Author(s):  
Chengcheng Liang ◽  
Sayed Haidar Abbas Raza ◽  
Muhammad Abuzar Raza Naqvi ◽  
Yanrong Feng ◽  
Rajwali Khan ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Yaxuan Sun ◽  
Jing Wang ◽  
Bin Han ◽  
Kun Meng ◽  
Yan Han ◽  
...  

Objective: This study aimed to investigate the possible molecular mechanisms associated with ischemic stroke through the construction of a lncRNA-miRNA-mRNA network. miRNA expression profile in GSE55937, mRNA and lncRNA expression profiles in GSE122709, and mRNA expression profile in GSE146882 were downloaded from the NCBI GEO database. After the identification of the differentially expressed miRNA, lncRNA, and mRNA using GSE55937 and GSE122709 in ischemic stroke vs. control groups, a protein-protein interaction (PPI) network was constructed. The lncRNA-miRNA, lncRNA-mRNA, and miRNA-mRNA pairs were predicted, and a lncRNA-miRNA-mRNA network was constructed. Additionally, the gene-drug interactions were predicted. Characteristic genes were used to construct a support vector machine (SVM) model and verified using quantitative reverse transcription polymerase chain reaction. In total 38 miRNAs, 115 lncRNAs, and 990 mRNAs were identified between ischemic stroke and control groups. A PPI network with 371 nodes and 2306 interaction relationships was constructed. The constructed lncRNA-miRNA-mRNA network contained 7 mRNAs, 14 lncRNAs, such as SND1-IT1, NAPA-AS1, LINC01001, LUCAT1, and ASAP1-IT2, and 8 miRNAs, such as miR-93-3p and miR-24-3p. The drug action analysis of the seven differential mRNAs included in the lncRNA-miRNA-mRNA network showed that four genes (GPR17, ADORA1, OPRM1 and LPAR3) were predicted as molecular targets of drugs. The area under the curve of the constructed SVM model was 0.886. The verification results of the relative expression of RNA by qRT-PCR were consistent with the results of bioinformatics analysis. LPAR3, ADORA1, GPR17, and OPRM1 may serve as therapeutic targets of ischemic stroke. lncRNA-miRNA-mRNA regulatory axis such as SND1-IT1/NAPA-AS1/LINC01001-miR-24-3p-LPAR3/ADORA1 and LUCAT1/ASAP1-IT2-miR-93-3p-GPR17 may play important roles in the progression of ischemic stroke.


Oncotarget ◽  
2019 ◽  
Vol 10 (39) ◽  
pp. 3879-3893 ◽  
Author(s):  
Tomasz Kolenda ◽  
Piotr Rutkowski ◽  
Michał Michalak ◽  
Katarzyna Kozak ◽  
Kacper Guglas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document