scholarly journals Influence of soil moisture regimes on growth, photosynthetic capacity, leaf biochemistry and reproductive capabilities of the invasive agronomic weed; Lactuca serriola

PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218191 ◽  
Author(s):  
Aakansha Chadha ◽  
Singarayer K. Florentine ◽  
Bhagirath S. Chauhan ◽  
Benjamin Long ◽  
Mithila Jayasundera
2017 ◽  
Vol 9 (12) ◽  
pp. 241 ◽  
Author(s):  
Casinga Mubasi Clérisse ◽  
Neema Ciza Angélique ◽  
Kajibwami Cikuru Marie-Angélique ◽  
Nabahungu Nshwarasi Leon ◽  
Mambani Banda Pierre

This study investigated the influence of three soil moisture irrigation regimes on concentration of seed iron and zinc content of four biofortified bean varieties promoted for eradication of malnutrition in Sud-Kivu highlands. A field experiment was conducted in the Hogola marsh highlands during two cultural seasons B2013 and B2014. The experiment design was a RCBD with a split plot arrangement where the main plots were 110 m2 and split plots 20 m2. A strategic application of homogenisation of the experimental site’s soil fertility by chemical fertilizers of the type: CaCO3, KCl and DAP was conducted out. Four biofortified varieties (CODMLB001, RWR2245, HM21-7 and RWK10) constituted main factor, while water regimes respectively [bottom of the slope: R1 = 48% soil moisture, at the middle of the slope R2 = 37% soil moisture and at the top of the slope: R3 = 29% soil moisture according to the gradient of humidity] represented secondary factor and seasonality, tertiary factor. The study showed that the concentrations of iron and zinc were highly correlated with soil moisture regimes. The variety HM21-7 demonstrated better adaptability because it showed a low rate of reduction of iron and zinc concentration under the three soil moisture regimes and was therefore best suited to fight malnutrition in the Sud-Kivu province.


2017 ◽  
Vol 9 (3) ◽  
pp. 1465-1468 ◽  
Author(s):  
Naveen Kumar ◽  
Suresh Kumar ◽  
Parveen Kumar ◽  
Meena Sewhag

A field experiment was conducted during rabi season 2011-2012 at Research Farm, CCS Haryana Agri-cultural University, Hisar, Haryana (India) to study the periodic soil moisture depletion and ground water use by bed planted barley as influenced by cultivars, crop geometry and moisture regimes under shallow water table conditions. The experiment was laid out in split plot design with three replications keeping combinations of three cultivars viz., BH 393, BH 902 and BH 885 and two crop geometries viz 2 rows per bed and 3 rows per bed (70 cm wide with 40 cm top and 30 cm furrow) in main plots and three moisture regimes (irrigation at IW/CPE 0.3, 0.4 & 0.5) in sub plots. The results revealed that maximum soil moisture depletion (105 mm) and ground water contribution (62 mm) were recorded in BH 902, followed by BH 393 and BH 885. Among crop geometries, soil moisture depletion (96.6 mm) and ground water contribution (61 mm) were recorded higher in 3 rows per bed than 2 rows per bed. Among three moisture regimes, the soil moisture depletion (108 mm) and ground water contribution (65 mm) decreased with increase in moisture regime from irrigation at IW/CPE 0.3 to irrigation at IW/CPE 0.4 or 0.5.


2021 ◽  
pp. 1-12
Author(s):  
R. Dietrich ◽  
F.W. Bell ◽  
M. Anand

Given the large contribution of forests to terrestrial carbon storage, there is a need to resolve the environmental and physiological drivers of tree-level response to rising atmospheric CO2. This study examines how site-level soil moisture influences growth and intrinsic water-use efficiency in sugar maple (Acer saccharum Marsh.). We construct tree-ring, δ18O, and Δ13C chronologies for trees across a soil moisture gradient in Ontario, Canada, and employ a structural equation modelling approach to ascertain their climatic, ontogenetic, and environmental drivers. Our results support previous evidence for the presence of strong developmental effects in tree-ring isotopic chronologies — in the range of −4.7‰ for Δ13C and +0.8‰ for δ18O — across the tree life span. Additionally, we show that the physiological response of sugar maple to increasing atmospheric CO2 depends on site-level soil moisture variability, with trees only in relatively wet plots exhibiting temporal increases in intrinsic water-use efficiency. These results suggest that trees in wet and mesic plots have experienced temporal increases in stomatal conductance and photosynthetic capacity, whereas trees in dry plots have experienced decreases in photosynthetic capacity. This study is the first to examine sugar maple physiology using a dendroisotopic approach and broadens our understanding of carbon–water interactions in temperate forests.


1997 ◽  
Vol 12 (1) ◽  
pp. 5-8
Author(s):  
Gordon D. Nigh

Abstract The objective of this study was to determine whether the relationship between site index and early height growth of lodgepole pine (Pinus contorta var. latifolia) is the same on wet and dry sites. If the height growth/site index relationship is the same for different site types, then only one growth intercept model is required to estimate site index. Indicator variables in nonlinear regression were used to incorporate soil moisture availability into a growth intercept model. One set of parameters in a site index/early height growth model was adequate for both wet and dry sites. This result was supported graphically. Therefore, only one growth intercept model is necessary for the sites examined in this study. West. J. Appl. For. 12(1):5-8.


Author(s):  
Jesus David Gomez Diaz ◽  
Alejandro I. Monterroso ◽  
Patricia Ruiz ◽  
Lizeth M. Lechuga ◽  
Ana Cecilia Conde Álvarez ◽  
...  

Purpose This study aims to present the climate change effect on soil moisture regimes in Mexico in a global 1.5°C warming scenario. Design/methodology/approach The soil moisture regimes were determined using the Newhall simulation model with the database of mean monthly precipitation and temperature at a scale of 1: 250,000 for the current scenario and with the climate change scenarios associated with a mean global temperature increase of 1.5°C, considering two Representative Concentration Pathways, 4.5 and 8.5 W/m2 and three general models of atmospheric circulation, namely, GFDL, HADGEM and MPI. The different vegetation types of the country were related to the soil moisture regimes for current conditions and for climate change. Findings According to the HADGEM and MPI models, almost the entire country is predicted to undergo a considerable increase in soil moisture deficit, and part of the areas of each moisture regime will shift to the next drier regime. The GFDL model also predicts this trend but at smaller proportions. Originality/value The changes in soil moisture at the regional scale that reveal the impacts of climate change and indicate where these changes will occur are important elements of the knowledge concerning the vulnerability of soils to climate change. New cartography is available in Mexico.


1984 ◽  
Vol 20 (2) ◽  
pp. 151-159
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe results of field experiments conducted in the spring seasons (February/March to June) of 1980 and 1981 indicate that grain yields of sorghum increased with increase in frequency of irrigation. Crops sprayed with atrazine or CCC yielded more than the unsprayed control; maximum yields were obtained by the application of atrazine at 200 g ha−1. Water use efficiency decreased with increase in irrigation but increased as a result of spraying crops with either chemical. Irrigation water can be saved by the spraying of atrazine or CCC onto spring-sown sorghum.


Sign in / Sign up

Export Citation Format

Share Document