scholarly journals Aggrecan is required for chondrocyte differentiation in ATDC5 chondroprogenitor cells

PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218399 ◽  
Author(s):  
Juanita K. Hodax ◽  
Jose Bernardo Quintos ◽  
Philip A. Gruppuso ◽  
Qian Chen ◽  
Salomi Desai ◽  
...  
1999 ◽  
Vol 144 (1) ◽  
pp. 161-173 ◽  
Author(s):  
Noriyuki Tsumaki ◽  
Kazuhiro Tanaka ◽  
Eri Arikawa-Hirasawa ◽  
Takanobu Nakase ◽  
Tomoatsu Kimura ◽  
...  

Cartilage provides the template for endochondral ossification and is crucial for determining the length and width of the skeleton. Transgenic mice with targeted expression of recombinant cartilage-derived morphogenetic protein-1 (CDMP-1), a member of the bone morphogenetic protein family, were created to investigate the role of CDMP-1 in skeletal formation. The mice exhibited chondrodysplasia with expanded cartilage, which consists of the enlarged hypertrophic zone and the reduced proliferating chondrocyte zone. Histologically, CDMP-1 increased the number of chondroprogenitor cells and accelerated chondrocyte differentiation to hypertrophy. Expression of CDMP-1 in the notochord inhibited vertebral body formation by blocking migration of sclerotome cells to the notochord. These results indicate that CDMP-1 antagonizes the ventralization signals from the notochord. Our study suggests a molecular mechanism by which CDMP-1 regulates the formation, growth, and differentiation of the skeletal elements.


Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 1695-1702 ◽  
Author(s):  
Lara Longobardi ◽  
Monica Torello ◽  
Caroline Buckway ◽  
Lynda O’Rear ◽  
William A. Horton ◽  
...  

Chondrogenesis results from the condensation of mesenchymal chondroprogenitor cells (MCC) that proliferate and differentiate into chondrocytes. We have previously shown that IGF binding protein (IGFBP)-3 has an IGF-independent antiproliferative effect in MCC. The current study evaluates the IGF-independent apoptotic effect of IGFBP-3 on MCC to modulate chondrocyte differentiation. We employed the RCJ3.1C5.18 chondrogenic cell line, which in culture progresses from MCC to differentiated chondrocytes; cells do not express IGFs or IGFBP-3. We also used IGFBP-3 mutants with decreased (I56 substituted to G56; L80 and L81 to G80G81) or abolished binding for IGFs (I56, L80, and L81 to G56G80G81). MCC transfected with IGFBP-3 detached, changed their phenotype, and underwent apoptosis. A maximal IGFBP-3 apoptotic effect was observed 24 h after transfection (463 ± 73% of controls; P < 0.001). Remarkably, IGFBP-3 mutants had similar effects, demonstrating that the IGFBP-3 apoptotic action was clearly IGF independent. In addition, treatment with IGFBP-3 in serum-free conditions resulted in a significant increase of apoptosis (173 ± 23% of controls; P < 0.05). Moreover, this apoptotic effect was selective for MCC, resulting in a selective reduction of chondrocytic nodules and a significant decrease in type II collagen expression and proteoglycan synthesis. In summary, we have identified a novel IGF-independent role for IGFBP-3 in the modulation of chondrocyte differentiation.


2021 ◽  
Author(s):  
Asra Almubarak ◽  
Rotem Lavy ◽  
Nikola Srnic ◽  
Yawen Hu ◽  
Devi P. Maripuri ◽  
...  

AbstractEndochondral ossification forms and grows the majority of the mammalian skeleton and is tightly controlled through gene regulatory networks. The forkhead box transcription factors Foxc1 and Foxc2 have been demonstrated to regulate aspects of osteoblast function in the formation of the skeleton but their roles in chondrocytes to control endochondral ossification are less clear. We demonstrate that Foxc1 expression is directly regulated by SOX9 activity, one of the earliest transcription factors to specify the chondrocyte lineages. Moreover we demonstrate that elevelated expression of Foxc1 promotes chondrocyte differentiation in mouse embryonic stem cells and loss of Foxc1 function inhibits chondrogenesis in vitro. Using chondrocyte-targeted deletion of Foxc1 and Foxc2 in mice, we reveal a role for these factors in chondrocyte differentiation in vivo. Loss of both Foxc1 and Foxc2 caused a general skeletal dysplasia predominantly affecting the vertebral column. The long bones of the limb were smaller and mineralization was reduced and organization of the growth plate was disrupted. In particular, the stacked columnar organization of the proliferative chondrocyte layer was reduced in size and cell proliferation in growth plate chondrocytes was reduced. Differential gene expression analysis indicated disrupted expression patterns in chondrogenesis and ossification genes throughout the entire process of endochondral ossification in Col2-cre;Foxc1Δ/Δ;Foxc2Δ/Δ embryos. Our results suggest that Foxc1 and Foxc2 are required for correct chondrocyte differentiation and function. Loss of both genes results in disorganization of the growth plate, reduced chondrocyte proliferation and delays in chondrocyte hypertrophy that prevents correct ossification of the endochondral skeleton.


2000 ◽  
Vol 113 (3) ◽  
pp. 439-450 ◽  
Author(s):  
D.P. Thomas ◽  
A. Sunters ◽  
A. Gentry ◽  
A.E. Grigoriadis

We have investigated the role of c-Fos in chondrocyte differentiation in vitro using both constitutive and inducible overexpression approaches in ATDC5 chondrogenic cells, which undergo a well-defined sequence of differentiation from chondroprogenitors to fully differentiated hypertrophic chondrocytes. Initially, we constitutively overexpressed exogenous c-fos in ATDC5 cells. Several stable clones expressing high levels of exogenous c-fos were isolated and those also expressing the cartilage marker type II collagen showed a marked decrease in cartilage nodule formation. To investigate further whether c-Fos directly regulates cartilage differentiation independently of potential clonal variation, we generated additional clones in which exogenous c-fos expression was tightly controlled by a tetracycline-regulatable promoter. Two clones, DT7.1 and DT12.4 were capable of nodule formation in the absence of c-fos. However, upon induction of exogenous c-fos, differentiation was markedly reduced in DT7.1 cells and was virtually abolished in clone DT12.4. Pulse experiments indicated that induction of c-fos only at early stages of proliferation/differentiation inhibited nodule formation, and limiting dilution studies suggested that overexpression of c-fos decreased the frequency of chondroprogenitor cells within the clonal population. Interestingly, rates of proliferation and apoptosis were unaffected by c-fos overexpression under standard conditions, suggesting that these processes do not contribute to the observed inhibition of differentiation. Finally, gene expression analyses demonstrated that the expression of the cartilage markers type II collagen and PTH/PTHrP receptor were down-regulated in the presence of exogenous c-Fos and correlated well with the differentiation status. Moreover, induction of c-fos resulted in the concomitant increase in the expression of fra-1 and c-jun, further highlighting the importance of AP-1 transcription factors in chondrocyte differentiation. These data demonstrate that c-fos overexpression directly inhibits chondrocyte differentiation in vitro, and therefore these cell lines provide very useful tools for identifying novel c-Fos-responsive genes that regulate the differentiation and activity of chondrocytes.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Juanita Hodax ◽  
Jose Bernardo Quintos ◽  
Philip Gruppuso ◽  
Qian Chen ◽  
Chathuraka Jayasuriya

2010 ◽  
Vol 24 (8) ◽  
pp. 1581-1593 ◽  
Author(s):  
Elizabeth W. Bradley ◽  
M. Hicham Drissi

Abstract Although genetic evidence demonstrated a requirement for Wnt5a during cartilage development, little is known about the mechanisms underlying Wnt5a-regulated chondrocyte growth and differentiation. We therefore investigated the signaling pathways by which Wnt5a influences chondrogenesis and differentiation to hypertrophy. Wnt5a treatment of chondroprogenitor cells increased chondrocyte hypertrophy and was associated with an increase in nuclear factor of activated T cells (NFAT) and a decrease in nuclear factor-κB (NF-κB) activation. In contrast, Wnt5a inhibited chondrocyte hypertrophy. This inhibition of hypertrophy occurred with the reciprocal signaling activation, in that a decrease in NFAT and an increase in NF-κB activation was observed. Furthermore, the increase in chondroprogenitor cell differentiation with Wnt5a treatment was blocked by calmodulin kinase or NFAT loss of function. In addition, the repression of chondrocyte hypertrophy observed was abrogated by NF-κB loss of function. Activation of the NFAT pathway downstream of Wnt5a also negatively regulated NF-κB activity, providing evidence of antagonism between these two pathways. Mechanistically, Wnt5a acts to increase chondrocyte differentiation at an early stage through calmodulin kinase /NFAT-dependent induction of Sox9. Conversely, Wnt5a represses chondrocyte hypertrophy via NF-κB-dependent inhibition of Runx2 expression. These data indicate that Wnt5a regulates chondrogenesis and chondrocyte hypertrophy in a stage-dependent manner through differential utilization of NFAT- and NF-κB-dependent signal transduction.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1918
Author(s):  
Young-Bum Son ◽  
Yeon Ik Jeong ◽  
Yeon Woo Jeong ◽  
Mohammad Shamim Hossein ◽  
Per Olof Olsson ◽  
...  

Mesenchymal stem cells (MSCs) are promising multipotent cells with applications for cartilage tissue regeneration in stem cell-based therapies. In cartilage regeneration, both bone marrow (BM-MSCs) and synovial fluid (SF-MSCs) are valuable sources. However, the cellular characteristics and chondrocyte differentiation potential were not reported in either of the camel stem cells. The in vitro chondrocyte differentiation competence of MSCs, from (BM and SF) sources of the same Camelus dromedaries (camel) donor, was determined. Both MSCs were evaluated on pluripotent markers and proliferation capacity. After passage three, both MSCs showed fibroblast-like morphology. The proliferation capacity was significantly increased in SF-MSCs compared to BM-MSCs. Furthermore, SF-MSCs showed an enhanced expression of transcription factors than BM-MSCs. SF-MSCs exhibited lower differentiation potential toward adipocytes than BM-MSCs. However, the osteoblast differentiation potential was similar in MSCs from both sources. Chondrogenic pellets obtained from SF-MSCs revealed higher levels of chondrocyte-specific markers than those from BM-MSCs. Additionally, glycosaminoglycan (GAG) content was elevated in SF-MSCs related to BM-MSCs. This is, to our knowledge, the first study to establish BM-MSCs and SF-MSCs from the same donor and to demonstrate in vitro differentiation potential into chondrocytes in camels.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. e1007346 ◽  
Author(s):  
Zhijia Tan ◽  
Ben Niu ◽  
Kwok Yeung Tsang ◽  
Ian G. Melhado ◽  
Shinsuke Ohba ◽  
...  

Endocrine ◽  
2000 ◽  
Vol 13 (3) ◽  
pp. 305-313 ◽  
Author(s):  
E. Nasatzky ◽  
E. Azran ◽  
D. D. Dean ◽  
Barbara D. Boyan ◽  
Z. Schwartz

2004 ◽  
Vol 183 (3) ◽  
pp. 477-486 ◽  
Author(s):  
Chanika Phornphutkul ◽  
Ke-Ying Wu ◽  
Xu Yang ◽  
Qian Chen ◽  
Philip A Gruppuso

Insulin-like growth factor-I (IGF-I) is a critical regulator of skeletal growth. While IGF-I has been shown to be a potent chondrocyte mitogen in vitro, its role in chondrocyte differentiation is less well characterized. We chose to study the action of IGF-I on an accepted model of chondrocyte differentiation, the ATDC5 cell line. Insulin concentrations sufficiently high to interact with the IGF-I receptor are routinely used to induce ATDC5 cells to differentiate. Therefore, we first examined the ability of IGF-I to promote chondrocyte differentiation at physiological concentrations. IGF-I could induce differentiation of these cells at concentrations below 10 nM. However, increasing IGF-I concentrations were less potent at inducing differentiation. We hypothesized that mitogenic effects of IGF-I might inhibit its differentiating effects. Indeed, the extracellular-signal-regulated kinase (ERK)-pathway inhibitor PD98059 inhibited ATDC5 cell DNA synthesis while enhancing differentiation. This suggested that the ability of IGF-I to promote both proliferation and differentiation might require that its signaling be modulated through the differentiation process. We therefore compared IGF-I-mediated ERK activation in proliferating and hypertrophic chondrocytes. IGF-I potently induced ERK activation in proliferating cells, but minimal ERK response was seen in hypertrophic cells. In contrast, IGF-I-mediated Akt activation was unchanged by differentiation, indicating intact upstream IGF-I receptor signaling. Similar findings were observed in the RCJ3.1C5.18 chondrogenic cell line and in primary chick chondrocytes. We conclude that IGF-I promotes both proliferation and differentiation of chondrocytes and that the differentiation effects of IGF-I may require uncoupling of signaling to the ERK pathway.


Sign in / Sign up

Export Citation Format

Share Document