scholarly journals A low-cost concurrent TSV test architecture with lossless test output compression scheme

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0221043 ◽  
Author(s):  
Young-woo Lee ◽  
Hyunchan Lim ◽  
Sungyoul Seo ◽  
Keewon Cho ◽  
Sungho Kang
Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 264 ◽  
Author(s):  
José Santa ◽  
Ramon Sanchez-Iborra ◽  
Pablo Rodriguez-Rey ◽  
Luis Bernal-Escobedo ◽  
Antonio Skarmeta

Remote vehicle monitoring is a field that has recently attracted the attention of both academia and industry. With the dawn of the Internet of Things (IoT) paradigm, the possibilities for performing this task have multiplied, due to the emergence of low-cost and multi-purpose monitoring devices and the evolution of wireless transmission technologies. Low Power-Wide Area Network (LPWAN) encompasses a set of IoT communication technologies that are gaining momentum, due to their highly valued features regarding transmission distance and end-device energy consumption. For that reason, in this work we present a vehicular monitoring platform enabled by LPWAN-based technology, namely Long Range Wide Area Network (LoRaWAN). Concretely, we explore the end-to-end architecture considering vehicle data retrieving by using an On-Board Diagnostics II (OBD-II) interface, their compression with a novel IETF compression scheme in order to transmit them over the constrained LoRaWAN link, and information visualization through a data server hosted in the cloud, by means of a web-based dashboard. A key advance of the proposal is the design and development of a UNIX-based network interface for LPWAN communications. The whole system has been tested in a university campus environment, showing its capabilities to remotely track vehicle status in real-time. The conducted performance evaluation also shows high levels of reliability in the transmission link, with packet delivery ratios over 95%. The platform boosts the process of monitoring vehicles, enabling a variety of services such as mechanical failure prediction and detection, fleet management, and traffic monitoring, and is extensible to light vehicles with severe power constraints.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 46045-46058
Author(s):  
Zeeshan Haider ◽  
Khalid Javeed ◽  
Mei Song ◽  
Xiaojun Wang
Keyword(s):  
Low Cost ◽  

Author(s):  
Julio L. da Silva ◽  
Emerson Camargo ◽  
Douglas Foster ◽  
Sandro T. Coelho ◽  
Antonio G. de Oliveira ◽  
...  

Author(s):  
O. P. Singh ◽  
A. K. Singh

AbstractThis paper introduces a robust and secure data hiding scheme to transmit grayscale image in encryption-then-compression domain. First, host image is transformed using lifting wavelet transform, Hessenberg decomposition and redundant singular value decomposition. Then, we use appropriate scaling factor to invisibly embed the singular value of watermark data into the lower frequency sub-band of the host image. We also use suitable encryption-then-compression scheme to improve the security of the image. Additionally, de-noising convolutional neural network is performed at extracted mark data to enhance the robustness of the scheme. Experimental results verify the effectiveness of our scheme, including embedding capacity, robustness, invisibility, and security. Further, it is established that our scheme has a better ability to recover concealed mark than conventional ones at low cost.


2020 ◽  
Vol 17 (4) ◽  
pp. 1852-1856
Author(s):  
P. Bhuvaneshwari ◽  
T. R. Jaya Chandra Lekha

This project proposes multilayer advanced high-performance bus architecture for low power applications. The proposed AHB architecture consists of the bus arbiter and the bus tracer (A.R.M.A., 1999. Specification (Rev 2.0) ARM IHI0011A). The bus arbiter, which is self motivated selects the input packet based on the control signals of the incoming packet. So that arbitration leads to a maximum performance. The On-Chip bus is an important system-on-chip infrastructure that connects major hardware components. Monitoring the on-chip bus signals is crucial to the SoC debugging and performance analysis/optimization (Gu, R.T., et al., 2007. A Low Cost Tile-Based 3D Graphics Full Pipeline with Real-Time Performance Monitoring Support for OpenGL ES in Consumer Electronics. 2007 IEEE International Symposium on Consumer Electronics, June; IEEE. pp.1–6). But, such signals are difficult to observe since they are deeply embedded in a SoC and there are often no sufficient I/O pins to access these signals. Therefore, a straightforward approach is to embed a bus tracer in SoC to capture the bus signal trace and store the trace in on-chip storage such as the trace memory which could then be off loaded to outside world for analysis. The bus tracer is capable of capturing the bus trace with different resolutions, all with efficient built in compression mechanisms such as dictionary based compression scheme for address and control signals and differential compression scheme for data. To improve the compression ratio matrix based compression which is lossless compression is used instead of differential compression. This system is designed using Verilog HDL, simulated using Modelsim and synthesized using Xilinx software.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Sign in / Sign up

Export Citation Format

Share Document