scholarly journals SLAMF1 contributes to cell survival through the AKT signaling pathway in Farage cells

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0238791
Author(s):  
Heejei Yoon ◽  
Eung Kweon Kim ◽  
Young Hyeh Ko
2006 ◽  
Vol 290 (1) ◽  
pp. G49-G55 ◽  
Author(s):  
Adhip P. N. Majumdar ◽  
Jianhua Du

Although aging is shown to be associated with decreased apoptosis and increased survival of cells in the colonic mucosa of Fischer 344 rats, the regulatory mechanisms are poorly understood. The current investigation examines the involvement of phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway in mediating the events of colonic mucosal cell survival during aging. We have observed that aging is associated with activation of PI3K/Akt signaling, as evidenced by the higher levels of phosphorylated forms of p85, the regulatory subunit of PI3K and of Akt in the proximal and distal colonic mucosa, of aged (21–23 mo) than in young (4–7 mo) rats. These increases are accompanied by a concomitant rise in phosphorylation of proapoptotic protein Bad, which is sequestered by the 14-3-3 family of proteins following phosphorylation by Akt, resulting in a reduction in nonphosphorylated Bad. The amount of antiapoptotic Bcl-xL bound to nonphosporylated Bad in the colonic mucosa is found to be substantially lower in aged than in young rats, resulting in a marked rise in the unbound/free form of Bcl-xL in the aging colon. The age-related activation of PI3K and the reduction in caspase-3 activity could be reversed by wortmannin, a specific inhibitor of PI3K. Increased levels of Bcl-xL and phosphorylated forms of Akt and Bad and reduction in caspase-3 activity were observed throughout the entire length of the colonic crypt of aged rats. We conclude that the constitutive activation of the PI3K/Akt-signaling pathway is partly responsible for the age-related increase in colonic mucosal cell survival. This is evident throughout the entire length of the colonic crypt.


2004 ◽  
Vol 4 (9) ◽  
pp. 1399-1407 ◽  
Author(s):  
Yi Zhao ◽  
Kwan Man ◽  
Chung Mau Lo ◽  
Kevin T. Ng ◽  
Xian Liang Li ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1492-1492
Author(s):  
Thomas Diacovo ◽  
Dosh Whye ◽  
Evgeni Efimenko ◽  
Jianchung Chen ◽  
Valeria Tosello ◽  
...  

Abstract Abstract 1492 Aberrant activation of the PI3K/Akt signaling pathway is a frequent event in cancer including various types of leukemia. Consequently, much emphasis has been placed on developing inhibitors that target this pathway. However, this would require an in depth knowledge of the role that specific class I PI3K isoforms (α, β, γ, δ)play in the pathogenesis of a particular hematological malignancy. For instance, PI3Kδ has been shown to be essential for the growth and survival of tumors derived from B cells such as chronic lymphocytic leukemia (CLL). Such knowledge has lead to development of the selective inhibitor GS-1101 (CAL-101) that has shown significant efficacy in clinical trials. Although PI3Kγ plays an important role in modulating the immune function of T cells, its role in leukemogenesis and tumor cell survival is poorly defined. Thus, it is unclear whether an inhibitor that also targets PI3Kγ would be of any benefit in hematological malignancies. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer resulting from clonal proliferation of T lymphoid precursors. Previous reports suggest that hyperactivation of the PI3K/Akt signaling pathway is a common feature of this disease with the majority of cases due to the loss of function of the tumor suppressor PTEN. However, it remains to be determined whether any particular class I PI3K isoform predominates in T-ALL pathogenesis. We now report that in the absence of PTEN-mediated regulation in T cell progenitors that PI3Kγ can promote leukemogenesis even in the absence of its delta counterpart. However, inactivation of both isoforms was necessary for the suppression of tumor development in animals (< 20% dead at 220 days as compare to >85% for controls), suggesting that PI3Kα and/or PI3Kβ cannot adequately compensate for a deficiency in their γ/δ counterparts. The importance of PI3Kγ in tumor progression was established by the inability of the PI3Kδ selective inhibitor IC87114 to reduce tumor burden in mice (Fig. 1A). In contrast, treatment of PI3Kγ deficient tumors with the same inhibitor dramatically reduced disease in affected tissues (Fig. 1B). Based on these observations we developed an inhibitor, designated CAL-130, which targets both PI3Kγ and PI3Kδ in an attempt to exploit the addiction of PTEN null T-ALL tumors to both isoforms. IC50 values of this compound were 1.3 nM and 6.1 nM for p110δ and p110γ catalytic domains, respectively, as compared to 115 nM and 56 nM for p110α and p110β. Importantly, this small molecule does not inhibit additional intracellular signaling pathways (>300 kinases tested) that are critical for general cell function and survival. Oral administration of this compound to diseased mice (blast counts > 50 million/ml) for 7 days reduced tumor burden and extended median survival of treated animals to 45 day as compared 7.5 days for the control group (P<0.001). Of note, this inhibitor did not perturb plasma insulin or glucose levels in contrast to the metabolic perturbations associated with tissue-specific deficiencies in PI3Kα and PI3Kβ. The efficacy of this dual inhibitor was not limited to murine tumors as dual inhibition of PI3Kγ and PI3Kδ in primary human T-ALL cells displaying hyperactivation of this signaling pathway also reduced tumor cell survival by promoting activation of pro-apoptotic pathways. This work advances our understanding of the role that distinct PI3K isoforms play in development and survival of T-ALL and suggest that it may be possible to therapeutically exploit the addiction of this hematological malignancy to PI3Kγ and PI3Kδ. Moreover, by selectively targeting a signaling pathway key to tumor survival, it may be possible to limit toxicities associated with conventional chemotherapeutic agents that broadly affect metabolic pathways and DNA replication. Current studies are focused on evaluating the synergistic effect of PI3Kγ/δ blockade in combination with conventional chemotherapeutic agents used in the treatment of T-ALL. Disclosures: Kashishian: Gilead Sciences: Employment. Lannutti:Gilead Sciences Inc: Employment.


2019 ◽  
Vol 18 (2) ◽  
pp. 196-200
Author(s):  
Yu Lixiao ◽  
Liu Xiaoyun

Cervical cancer is one of the most malignant cancers of the female reproductive system with high morbidity and mortality. In the current study, we have examined the effect of eriodictyol on cell survival including cell growth, cell cycle and apoptosis of cervical cancer cells and also explored the underlying mechanism(s). To this end, CCK-8 assay, flow cytometry and western blotting assays were performed in cervical cancer HeLa cells. Eriodictyol significantly inhibited cell survival including impeding the cell viability, arresting the cell cycle at the G1 phase and potentiating cell apoptosis in a concentration-dependent manner. Also, ERI activated PTEN, P21, cleaved caspase-3/-9 expression and downregulated P-Akt and cyclin D1 expression in a dose-dependent manner. In conclusion, ERI can inhibit cervical cancer HeLa cells viability via impeding cell cycle and inducing apoptosis by regulating PTEN/Akt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document