Therapeutic Utility of PI3Kγ Inhibition in Leukemogenesis and Tumor Cell Survival

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1492-1492
Author(s):  
Thomas Diacovo ◽  
Dosh Whye ◽  
Evgeni Efimenko ◽  
Jianchung Chen ◽  
Valeria Tosello ◽  
...  

Abstract Abstract 1492 Aberrant activation of the PI3K/Akt signaling pathway is a frequent event in cancer including various types of leukemia. Consequently, much emphasis has been placed on developing inhibitors that target this pathway. However, this would require an in depth knowledge of the role that specific class I PI3K isoforms (α, β, γ, δ)play in the pathogenesis of a particular hematological malignancy. For instance, PI3Kδ has been shown to be essential for the growth and survival of tumors derived from B cells such as chronic lymphocytic leukemia (CLL). Such knowledge has lead to development of the selective inhibitor GS-1101 (CAL-101) that has shown significant efficacy in clinical trials. Although PI3Kγ plays an important role in modulating the immune function of T cells, its role in leukemogenesis and tumor cell survival is poorly defined. Thus, it is unclear whether an inhibitor that also targets PI3Kγ would be of any benefit in hematological malignancies. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer resulting from clonal proliferation of T lymphoid precursors. Previous reports suggest that hyperactivation of the PI3K/Akt signaling pathway is a common feature of this disease with the majority of cases due to the loss of function of the tumor suppressor PTEN. However, it remains to be determined whether any particular class I PI3K isoform predominates in T-ALL pathogenesis. We now report that in the absence of PTEN-mediated regulation in T cell progenitors that PI3Kγ can promote leukemogenesis even in the absence of its delta counterpart. However, inactivation of both isoforms was necessary for the suppression of tumor development in animals (< 20% dead at 220 days as compare to >85% for controls), suggesting that PI3Kα and/or PI3Kβ cannot adequately compensate for a deficiency in their γ/δ counterparts. The importance of PI3Kγ in tumor progression was established by the inability of the PI3Kδ selective inhibitor IC87114 to reduce tumor burden in mice (Fig. 1A). In contrast, treatment of PI3Kγ deficient tumors with the same inhibitor dramatically reduced disease in affected tissues (Fig. 1B). Based on these observations we developed an inhibitor, designated CAL-130, which targets both PI3Kγ and PI3Kδ in an attempt to exploit the addiction of PTEN null T-ALL tumors to both isoforms. IC50 values of this compound were 1.3 nM and 6.1 nM for p110δ and p110γ catalytic domains, respectively, as compared to 115 nM and 56 nM for p110α and p110β. Importantly, this small molecule does not inhibit additional intracellular signaling pathways (>300 kinases tested) that are critical for general cell function and survival. Oral administration of this compound to diseased mice (blast counts > 50 million/ml) for 7 days reduced tumor burden and extended median survival of treated animals to 45 day as compared 7.5 days for the control group (P<0.001). Of note, this inhibitor did not perturb plasma insulin or glucose levels in contrast to the metabolic perturbations associated with tissue-specific deficiencies in PI3Kα and PI3Kβ. The efficacy of this dual inhibitor was not limited to murine tumors as dual inhibition of PI3Kγ and PI3Kδ in primary human T-ALL cells displaying hyperactivation of this signaling pathway also reduced tumor cell survival by promoting activation of pro-apoptotic pathways. This work advances our understanding of the role that distinct PI3K isoforms play in development and survival of T-ALL and suggest that it may be possible to therapeutically exploit the addiction of this hematological malignancy to PI3Kγ and PI3Kδ. Moreover, by selectively targeting a signaling pathway key to tumor survival, it may be possible to limit toxicities associated with conventional chemotherapeutic agents that broadly affect metabolic pathways and DNA replication. Current studies are focused on evaluating the synergistic effect of PI3Kγ/δ blockade in combination with conventional chemotherapeutic agents used in the treatment of T-ALL. Disclosures: Kashishian: Gilead Sciences: Employment. Lannutti:Gilead Sciences Inc: Employment.

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0238791
Author(s):  
Heejei Yoon ◽  
Eung Kweon Kim ◽  
Young Hyeh Ko

2006 ◽  
Vol 290 (1) ◽  
pp. G49-G55 ◽  
Author(s):  
Adhip P. N. Majumdar ◽  
Jianhua Du

Although aging is shown to be associated with decreased apoptosis and increased survival of cells in the colonic mucosa of Fischer 344 rats, the regulatory mechanisms are poorly understood. The current investigation examines the involvement of phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway in mediating the events of colonic mucosal cell survival during aging. We have observed that aging is associated with activation of PI3K/Akt signaling, as evidenced by the higher levels of phosphorylated forms of p85, the regulatory subunit of PI3K and of Akt in the proximal and distal colonic mucosa, of aged (21–23 mo) than in young (4–7 mo) rats. These increases are accompanied by a concomitant rise in phosphorylation of proapoptotic protein Bad, which is sequestered by the 14-3-3 family of proteins following phosphorylation by Akt, resulting in a reduction in nonphosphorylated Bad. The amount of antiapoptotic Bcl-xL bound to nonphosporylated Bad in the colonic mucosa is found to be substantially lower in aged than in young rats, resulting in a marked rise in the unbound/free form of Bcl-xL in the aging colon. The age-related activation of PI3K and the reduction in caspase-3 activity could be reversed by wortmannin, a specific inhibitor of PI3K. Increased levels of Bcl-xL and phosphorylated forms of Akt and Bad and reduction in caspase-3 activity were observed throughout the entire length of the colonic crypt of aged rats. We conclude that the constitutive activation of the PI3K/Akt-signaling pathway is partly responsible for the age-related increase in colonic mucosal cell survival. This is evident throughout the entire length of the colonic crypt.


2008 ◽  
Vol 63 (5) ◽  
pp. 783-791 ◽  
Author(s):  
Kristen Foster ◽  
Yong Wang ◽  
Daohong Zhou ◽  
Cynthia Wright

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2355-2355
Author(s):  
Weina Chen ◽  
Ioannis Grammatikakis ◽  
Jiang Li ◽  
Vassiliki Leventaki ◽  
L. Jeffrey Medeiros ◽  
...  

Abstract Acute myelogeneous leukemia (AML) is a heterogeneous disease and includes a subset of neoplasms that harbor activating mutations of the fms-like tyrosine kinase-3 (FLT3) gene. Mutated FLT3 has recently been shown to activate downstream oncogenic pathways including the PI3K/AKT pathway (Scheijen, et al. Oncogene. 23:3338–3349, 2004; Choudhary, et al. Blood. 106:265–273, 2005). It is known that activated AKT mediates its effects, at least in part, through activation of mammalian target of rapamycin (mTOR). However, the potential role of PI3K/AKT/mTOR signaling pathway in tumor cell survival in AML remains largely unknown. We hypothesized that the PI3K/AKT signaling pathway is activated in AML and contributes to tumor cell survival through activation (phosphorylation) of mTOR and its downstream effectors 4EBP1, p70S6K, ribosomal protein S6 (rpS6), and eIF-4E. We used 3 AML cell lines, including MV4-11 and MOLM-13, that are homozygous and heterozygous for mutated FLT3, respectively, as well as U937 (wild-type FLT3). All 3 cell lines expressed activated (serine 473-phosphorylated) AKT (Ser473pAKT), and phosphorylated 4EBP1, p70S6K and rpS6 shown by Western Blot analysis. Treatment of AML cell lines with LY294002, an inhibitor of PI3K, resulted in a dose-dependent decrease of phosphorylation of AKT, mTOR, 4EBP1, p70S6K, and rpS6. This was associated with decreased cell viability as assessed by trypan-blue exclusion assay. Cell death following inhibition of the PI3K/AKT pathway was predominantly attributed to apoptosis as shown by increased annexin V staining assessed by flow cytometry. These changes were associated with downregulation of the anti-apoptotic proteins cFLIP, Mcl-1, and Bcl-XL that are involved in the extrinsic and intrinsic apoptosis. Cell cycle analysis using flow cytometry also showed that inhibition of PI3K resulted in decreased S-phase and increased G1-phase fraction. These cell cycle changes were associated with increased levels of the cyclin-dependent kinase inhibitor p27 and underphosphorylated Rb in a dose-dependent manner. Similar biologic effects, although to a lesser degree, were found after treatment of AML cells with rapamycin, an inhibitor of mTOR. In addition, expression of activated AKT, mTOR, 4EBP1, p70S6K and rpS6 was assessed in AML tumors (n=19) using tissue microarrays of bone marrow samples and immunohistochemical methods. These included tumors with (n=14) and without (n=5) FLT3 mutations. Using a 10% cutoff to define positivity, 13/19 (68%) expressed Ser473pAKT, 16/18 (89%) mTOR, 15/19 (79%) p4E-BP1, 18/19 (95%) p-p70S6K, and 15/18 (83%) p-rpS6. However, no association between expression of activated AKT, or mTOR signaling proteins and FLT3 mutational status was observed. Our study provides first evidence that the AKT/mTOR signaling pathway is activated in AML cell lines and tumors regardless of FLT3 mutational status. The AKT/mTOR signaling pathway may contribute to cell cycle progression and tumor cell survival in AML. Inhibition of this oncogenic pathway represents a potential target for therapy in patients with AML.


2004 ◽  
Vol 4 (9) ◽  
pp. 1399-1407 ◽  
Author(s):  
Yi Zhao ◽  
Kwan Man ◽  
Chung Mau Lo ◽  
Kevin T. Ng ◽  
Xian Liang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document