scholarly journals Multi-scale habitat assessment of pronghorn migration routes

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241042
Author(s):  
Andrew F. Jakes ◽  
Nicholas J. DeCesare ◽  
Paul F. Jones ◽  
C. Cormack Gates ◽  
Scott J. Story ◽  
...  

We studied the habitat selection of pronghorn (Antilocapra americana) during seasonal migration; an important period in an animal’s annual cycle associated with broad-scale movements. We further decompose our understanding of migration habitat itself as the product of both broad- and fine-scale behavioral decisions and take a multi-scale approach to assess pronghorn spring and fall migration across the transboundary Northern Sagebrush Steppe region. We used a hierarchical habitat selection framework to assess a suite of natural and anthropogenic features that have been shown to influence selection patterns of pronghorn at both broad (migratory neighborhood) and fine (migratory pathway) scales. We then combined single-scale predictions into a scale-integrated step selection function (ISSF) map to assess its effectiveness in predicting migration route habitat. During spring, pronghorn selected for native grasslands, areas of high forage productivity (NDVI), and avoided human activity (i.e., roads and oil and natural gas wells). During fall, pronghorn selected for native grasslands, larger streams and rivers, and avoided roads. We detected avoidance of paved roads, unpaved roads, and wells at broad spatial scales, but no response to these features at fine scales. In other words, migratory pronghorn responded more strongly to anthropogenic features when selecting a broad neighborhood through which to migrate than when selecting individual steps along their migratory pathway. Our results demonstrate that scales of migratory route selection are hierarchically nested within each other from broader (second-order) to finer scales (third-order). In addition, we found other variables during particular migratory periods (i.e., native grasslands in spring) were selected for across scales indicating their importance for pronghorn. The mapping of ungulate migration habitat is a topic of high conservation relevance. In some applications, corridors are mapped according to telemetry location data from a sample of animals, with the assumption that the sample adequately represents habitat for the entire population. Our use of multi-scale modelling to predict resource selection during migration shows promise and may offer another relevant alternative for use in future conservation planning and land management decisions where telemetry-based sampling is unavailable or incomplete.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3164 ◽  
Author(s):  
Jan Jedlikowski ◽  
Mattia Brambilla

BackgroundHabitat selection and its adaptive outcomes are crucial features for animal life-history strategies. Nevertheless, congruence between habitat preferences and breeding success has been rarely demonstrated, which may result from the single-scale evaluation of animal choices. As habitat selection is a complex multi-scale process in many groups of animal species, investigating adaptiveness of habitat selection in a multi-scale framework is crucial. In this study, we explore whether habitat preferences acting at different spatial scales enhance the fitness of bird species, and check the appropriateness of single vs. multi-scale models. We expected that variables found to be more important for habitat selection at individual scale(s), would coherently play a major role in affecting nest survival at the same scale(s).MethodsWe considered habitat preferences of two Rallidae species, little crake (Zapornia parva) and water rail (Rallus aquaticus), at three spatial scales (landscape, territory, and nest-site) and related them to nest survival. Single-scale versus multi-scale models (GLS and glmmPQL) were compared to check which model better described adaptiveness of habitat preferences. Consistency between the effect of variables on habitat selection and on nest survival was checked to investigate their adaptive value.ResultsIn both species, multi-scale models for nest survival were more supported than single-scale ones. In little crake, the multi-scale model indicated vegetation density and water depth at the territory scale, as well as vegetation height at nest-site scale, as the most important variables. The first two variables were among the most important for nest survival and habitat selection, and the coherent effects suggested the adaptive value of habitat preferences. In water rail, the multi-scale model of nest survival showed vegetation density at territory scale and extent of emergent vegetation within landscape scale as the most important ones, although we found a consistent effect with the habitat selection model (and hence evidence for adaptiveness) only for the former.DiscussionOur work suggests caution when interpreting adaptiveness of habitat preferences at a single spatial scale because such an approach may under- or over-estimate the importance of habitat factors. As an example, we found evidence only for a weak effect of water depth at territory scale on little crake nest survival; however, according to the multi-scale analysis, such effect turned out to be important and appeared highly adaptive. Therefore, multi-scale approaches to the study of adaptive explanations for habitat selection mechanisms should be promoted.


2016 ◽  
Vol 94 (11) ◽  
pp. 733-745 ◽  
Author(s):  
Kim G. Poole ◽  
Rob Serrouya ◽  
Irene E. Teske ◽  
Kevin Podrasky

Winter is an important period for most mountain ungulates due to limited availability of preferred forage and costs associated with travel through deep snow. We examined winter habitat selection by Rocky Mountain bighorn sheep (Ovis canadensis canadensis Shaw, 1804) where four large, open-pit coal mines are in operation. Sheep in this area generally winter at high elevation on windswept, south-facing native grasslands. We used GPS collars and Resource Selection Function analysis to examine movements and habitat selection. A majority (79%) of the sheep were migratory and fidelity to winter ranges was high (88%). Sheep showed low use (∼10%–20%) of mine areas between November and April, followed by increased use peaking at 60%–65% in September–October. Wintering sheep were positively associated with high elevations, closeness to escape terrain, and warmer aspects. High-elevation, native grasslands were the highest ranked cover class. Most sheep that used mine areas during winter used reclaimed habitats, primarily reclaimed spoils and pits. Primary winter ranges comprised 4.3% of merged sheep range, emphasizing the limited amount of occupied winter ranges within the landscape. Disturbance to native winter range resulting from development should be minimized or be conducted in a manner that effectively manages and (or) mitigates the impacts.


2016 ◽  
Vol 27 (3) ◽  
pp. 398-413 ◽  
Author(s):  
CRISTIAN PÉREZ-GRANADOS ◽  
GERMÁN M. LÓPEZ-IBORRA ◽  
JAVIER SEOANE

SummaryHabitat selection of endangered species in peripheral populations must be considered when designing effective conservation plans, as these populations tend to occupy atypical habitats where species-environment relationships are not well understood. We examined patterns of habitat use in peripheral populations of the endangered Dupont’s Lark Chersophilus duplonti using a multi-scale approach and assessed the spatiotemporal transferability of these models to test for their generality. Our results show that at microhabitat (circles of 50-m diameter used by the species versus random points) and macrohabitat (occupied/unoccupied squares of 1 ha) scales the species selected flat and non-forested areas, but at the microhabitat scale the cover of small shrubs was also important. Models developed at patch scale (occupied /unoccupied sites) identified only site size as an important predictor of species occurrence. Habitat models transferred successfully among sites and years, which suggests that these models and our recommendations may be extrapolated over a larger geographic area. A multi-scale approach was used for identifying conservation requirements at different spatial scales. At the patch scale our models confirm it is a priority to maintain or enlarge the extent of habitat patches to ensure the viability of the studied metapopulation. At the macrohabitat scale our results suggest that reducing tree density in low slope areas would be the most effective management action. At the microhabitat scale, encouraging the presence of small and medium-sized shrubs, by clearing certain scrubs (e.g. large brooms Genista spp. and rosemary Rosmarinus officinalis) or promoting traditional low-level extensive grazing, should increase the availability of high-quality habitats for the species, and thus the number of potential territories within a patch. These recommendations largely coincide with the ones given for core populations at specific scales elsewhere.


2021 ◽  
Vol 36 (2) ◽  
pp. 455-474
Author(s):  
Eric Ash ◽  
David W. Macdonald ◽  
Samuel A. Cushman ◽  
Adisorn Noochdumrong ◽  
Tim Redford ◽  
...  

Abstract Context Species habitat suitability models rarely incorporate multiple spatial scales or functional shapes of a species’ response to covariates. Optimizing models for these factors may produce more robust, reliable, and informative habitat suitability models, which can be beneficial for the conservation of rare and endangered species, such as tigers (Panthera tigris). Objectives We provide the first formal assessment of the relative impacts of scale-optimization and shape-optimization on model performance and habitat suitability predictions. We explored how optimization influences conclusions regarding habitat selection and mapped probability of occurrence. Methods We collated environmental variables expected to affect tiger occurrence, calculating focal statistics and landscape metrics at spatial scales ranging from 250 m to 16 km. We then constructed a set of presence–absence generalized linear models including: (1) single-scale optimized models (SSO); (2) a multi-scale optimized model (MSO); (3) single-scale shape-optimized models (SSSO) and (4) a multi-scale- and shape-optimized model (MSSO). We compared performance and resulting prediction maps for top performing models. Results The SSO (16 km), SSSO (16 km), MSO, and MSSO models performed equally well (AUC > 0.9). However, these differed substantially in prediction and mapped habitat suitability, leading to different ecological understanding and potentially divergent conservation recommendations. Habitat selection was highly scale-dependent and the strongest relationships with environmental variables were at the broadest scales analysed. Modelling approach had a substantial influence in variable importance among top models. Conclusions Our results suggest that optimization of the scale of resource selection is crucial in modelling tiger habitat selection. However, in this analysis, shape-optimization did not improve model performance.


2015 ◽  
Vol 2 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Christopher Michael Hensz

AbstractIdentification and characterization of seasonal migration routes and stopover sites has been recognized as important to the conservation of migratory species. This project utilizes multiple regression models including circular-linear regression to identify associations between route choice, travel speed, and environmental preferences using trajectory data of migratory Arctic Terns (Sterna paradisaea) and environmental data obtained through remote-sensing techniques. Results of this study suggest that route choice on the southward post-breeding migration route may be more dependent on underlying environment than the northward postwintering migration route. In contrast, travel speed was variably associated with underlying environment between southward and northward migrations, including several differences regarding the impact of interactions between environmental variables. These results reveal the importance of using multiple metrics in the estimation of spatial resistance and highlight conflicts between the theoretical resistance framework of GIS and movement analysis methods.


2018 ◽  
Vol 11 (2) ◽  
pp. 108-122 ◽  
Author(s):  
Andrea H. Claassen ◽  
James D. Forester ◽  
Todd W. Arnold ◽  
Francesca J. Cuthbert

Habitat selection occurs at multiple spatial scales and affects demographic processes including reproductive success. Few studies, however, have linked multi-scale habitat selection to reproductive success. We investigated breeding habitat selection at three spatial scales (nest site, nest area and territory), and the consequences of habitat selection on reproductive success of four riverine sandbar-nesting bird species in Cambodia. All species generally selected larger habitat patches, in territories with higher proportions of bare ground substrates, including gravel and dry mud. Individuals generally selected areas with less vegetation; however, at smaller spatial scales, Small Pratincoles (Glareola lactea) and Little Ringed Plovers (Charadrius dubius) used sites with more vegetation. Vegetation generally had a negative effect on reproductive success. For River Terns (Sterna aurantia), nest success was lower in areas with a higher proportion of invasive Mimosa pigra, and chick survival decreased with vegetation height. River Lapwing (Vanellus duvaucelii) nest success decreased with more woody stems, and nest success of Small Pratincoles and Little Ringed Plovers decreased with more herbaceous vegetation. Negative effects of vegetation were likely due to reduced ability of incubating birds to detect predators, or increased cover or foraging efficiency of predators. Finally, proximity to the river channel reduced nest success; nests near the channel had a higher risk of flooding. This is the first study to identify variables associated with habitat selection for all species in this study and to relate habitat use to reproductive success. Results of this study will aid conservation efforts for these regionally threatened species.


Rangifer ◽  
2003 ◽  
Vol 23 (5) ◽  
pp. 293 ◽  
Author(s):  
Tara Szkorupa ◽  
Fiona Schmiegelow

This research suggests that mountain caribou select a suite of winter habitats, at multiple spatial scales, and under a range of snow conditions. Our findings lead to several management recommendations. In general, habitat selection by caribou necessitates management over large spatial and temporal scales.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yue Sun ◽  
Yanze Yu ◽  
Jinhao Guo ◽  
Minghai Zhang

Single-scale frameworks are often used to analyze the habitat selections of species. Research on habitat selection can be significantly improved using multi-scale models that enable greater in-depth analyses of the scale dependence between species and specific environmental factors. In this study, the winter habitat selection of red deer in the Gogostaihanwula Nature Reserve, Inner Mongolia, was studied using a multi-scale model. Each selected covariate was included in multi-scale models at their “characteristic scale”, and we used an all subsets approach and model selection framework to assess habitat selection. The results showed that: (1) Univariate logistic regression analysis showed that the response scale of red deer to environmental factors was different among different covariate. The optimal scale of the single covariate was 800–3200 m, slope (SLP), altitude (ELE), and ratio of deciduous broad-leaved forests were 800 m in large scale, except that the farmland ratio was 200 m in fine scale. The optimal scale of road density and grassland ratio is both 1600 m, and the optimal scale of net forest production capacity is 3200 m; (2) distance to forest edges, distance to cement roads, distance to villages, altitude, distance to all road, and slope of the region were the most important factors affecting winter habitat selection. The outcomes of this study indicate that future studies on the effectiveness of habitat selections will benefit from multi-scale models. In addition to increasing interpretive and predictive capabilities, multi-scale habitat selection models enhance our understanding of how species respond to their environments and contribute to the formulation of effective conservation and management strategies for ungulata.


Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.


Sign in / Sign up

Export Citation Format

Share Document