scholarly journals Hepatic pyruvate carboxylase expression differed prior to hyperketonemia onset in transition dairy cows

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241929
Author(s):  
Kristina A. Weld ◽  
Rafael Caputo Oliveira ◽  
Sandra J. Bertics ◽  
Sophia J. Erb ◽  
Heather M. White

Fatty acids (FA) provide an energy source to the liver during negative energy balance; however, when FA influx is excessive, FA can be stored as liver lipids or incompletely oxidized to β-hydroxybutyrate (BHB). The objectives of this study were to quantify plasma and liver FA profiles and hepatic gene expression in cows diagnosed with hyperketonemia (HYK; BHB ≥ 1.2 mM) or not (nonHYK; BHB < 1.2 mM) to determine a relationship between FA profile and expression of hepatic genes related to oxidation and gluconeogenesis. Production parameters, blood samples (-28, -3, 1, 3, 5, 7, 9, 11, and 14 d relative to parturition; n = 28 cows), and liver biopsies (1, 14, and 28 d postpartum; n = 22 cows) were collected from Holstein cows. Cows were retrospectively grouped as HYK or nonHYK based on BHB concentrations in postpartum blood samples. Average first positive test (BHB ≥ 1.2 mM) was 9 ± 5 d (± SD). Cows diagnosed with HYK had greater C18:1 and lower C18:2 plasma proportions. Liver FA proportions of C16:0 and C18:1 were related to proportions in plasma, but C18:0 and C18:2 were not. Some interactions between plasma FA and HYK on liver FA proportion suggests that there may be preferential use depending upon metabolic state. Cows diagnosed with HYK had decreased pyruvate carboxylase (PC) expression, but no difference at 1 d postpartum in either cytosolic or mitochondrial isoforms of phosphoenolpyruvate carboxykinase (PCK). The increased PC to PCK ratios in nonHYK cows suggests the potential for greater hepatic oxidative capacity, coinciding with decreased circulating BHB. Interestingly, FA, known regulators of PC expression, were not correlated with PC expression at 1 d postpartum. Taken together, these data demonstrate that HYK cows experience a decrease in the ratio of hepatic PC to PCK at 1 day postpartum prior to HYK diagnosis which, on average, manifested a week later. The differential regulation of PC involved in HYK diagnosis may not be completely due to shifts in FA profiles and warrants further investigation.

2004 ◽  
Vol 71 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Absolom Murondoti ◽  
Ruurd Jorritsma ◽  
Anton C Beynen ◽  
Theo Wensing ◽  
Math JH Geelen

The objective was to measure the activities of all the enzymes essential for hepatic gluconeogenesis in dairy cows with induced fatty liver. We aimed to induce severe fatty liver in ten experimental cows by overfeeding them during the dry period while seven control cows were maintained on a restricted diet. To induce a marked negative energy balance, the experimental cows were deprived of feed for 8 h immediately after parturition. In addition, the experimental cows were given a restricted amount of diet during the first 5 d of lactation. Liver samples were collected 1 week before and 1, 2 and 4 weeks after parturition. Before parturition, liver triacylglycerol concentrations did not differ between the two groups. After parturition, the experimental cows developed marked fatty liver as indicated by a higher level of triacylglycerols in the liver compared with the control cows.Before parturition, all gluconeogenic enzymes in the liver were lower in experimental cows than in control cows. Phosphoenolpyruvate carboxykinase, pyruvate carboxylase and propionyl-CoA carboxylase were significantly lower and fructose 1,6-bisphosphatase and glucose 6-phosphatase tended to be lower in the experimental cows. The activities of two crucial enzymes for gluconeogenesis in ruminants, i.e., phosphoenolpyruvate carboxykinase and propionyl-CoA carboxylase, remained low throughout the sampling period post partum. Activities of pyruvate carboxylase and glucose 6-phosphatase in the experimental cows post partum were upgraded to values similar to those of the control cows. The results showed that the capacity for hepatic gluconeogenesis before parturition was lower in cows with induced fatty liver than in control cows. After parturition, the low activities of crucial gluconeogenic enzymes indicated insufficient production of glucose. It is suggested that the low gluconeogenic capacity leads successively to low blood glucose concentrations, low insulin levels and high rates of mobilization of fatty acid, causing severe hepatic lipidosis.


2018 ◽  
Vol 3 (1) ◽  
pp. 443-455 ◽  
Author(s):  
Philipe Moriel ◽  
Bruno Ieda Cappellozza ◽  
Matheus B Piccolo ◽  
Reinaldo F Cooke ◽  
Miguel F Miranda ◽  
...  

Abstract The present study evaluated the growth and puberty attainment of Bos indicus heifers administered recombinant bovine somatotropin (bST) or saline injections during preweaning and/or postweaning. On day 0, 177 suckling Nellore heifers were stratified by initial age and body weight (BW) (80 ± 10 d; 97 ± 16 kg), and randomly assigned, in a 2 × 2 factorial design (n = 44 to 45 heifers/treatment), to receive s.c. injections of saline (5 mL 0.9% NaCl) or sometribove zinc (Posilac; Elanco, Greenfield, IN; 6.14 mg/kg of BW0.75) on days 0 and 10 (PRE) and/or days 167 and 177 (POS). All heifers were managed as a single group in Brachiaria decumbens pastures from day 0 until 24 d postweaning (day 191), and then provided a corn silage–based TMR from days 191 to 380 to achieve 65% to 70% of mature BW at the end of the study (day 380). Heifer full BW was collected on days 0, 10, 167, 177, and monthly from days 191 to 380. Transrectal ultrasonography of ovaries was performed on days 1 and 10 of each month from days 229 to 380 to assess the percentage of pubertal heifers. Liver biopsies and blood samples from jugular vein were collected on days 0, 10, 167, 177, and 380. Additional blood samples were collected monthly from days 259 to 380 (n = 10 to 15 heifers/treatment). No interactions among day of the study, PRE, and POS injections of saline or bST were detected (P ≥ 0.11). Preweaning bST injections increased heifer average daily gain (ADG) from days 0 to 10 and plasma IGF-1 on day 10 (P ≤ 0.03), did not affect ADG from days 0 to 177, plasma IGF-1 from days 259 to 380, and any liver gene mRNA expression (P ≥ 0.19), but tended to decrease ADG from days 191 to 380 (P = 0.07) and percentage of pubertal heifers on days 349 (P = 0.07), 359 (P = 0.002), and 380 (P = 0.0001) compared with saline injections. Postweaning bST injections increased plasma IGF-1 on day 177 and overall liver mRNA expression of GHR-1A (P ≤ 0.05), decreased plasma IGF-1 from days 259 to 380 (P = 0.03), tended to decrease liver mRNA expression of GHR-1B on day 177 (P = 0.08), but did not affect ADG from days 167 to 177 and 191 to 380, and puberty attainment from days 229 to 380 (P ≥ 0.12) compared with saline injections. Thus, preweaning and postweaning injections of bST successfully increased heifer plasma IGF-1 concentrations 10 d after first injection. Postweaning injections of bST had no impact on puberty attainment, whereas preweaning bST injections of bST impaired puberty attainment of Nellore beef heifers.


2019 ◽  
Vol 74 (10) ◽  
pp. 6133-2019
Author(s):  
YUANYUAN CHEN ◽  
ZHIHAO DONG ◽  
RUIRUI LI ◽  
CHUANG XU

Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.


2025 ◽  
Vol 77 (04) ◽  
pp. 6511-2025
Author(s):  
SONGUL ERDOGAN ◽  
KEREM URAL ◽  
HASAN ERDOGAN ◽  
DENIZ ALIC URAL ◽  
MEHMET GULTEKIN ◽  
...  

In the present study, the aim was to determine alteration of NEFA, calcium and vitamin D3 levels in cow and calf pairs at parturition as well as correlation between each parameter levels. For this purpose, a cow-side device employing the enzymatic colorimetric method was used for measurement of NEFA and calcium levels. On the other hand, serum 25(OH)D3 analysis was performed using the fluorescence immunochromatographic method at the laboratory in the Faculty. Blood samples were taken from Vena jugularis of 15 Simmental cow and calf pairs immediately after parturition and placed in serum and heparinized tubes. In cow and calf pairs, concentration of vitamin D3 (15.6-120 and 31.8-120 ng/mL, respectively), NEFA (0.12-1.2 and 0.09-0.8 mmol/L, respectively) and calcium (1.8 ± 0.9 and 2.2 ± 0.6 mmol/L, respectively) were determined. There was no significant correlation between NEFA, Ca, and vitamin D3 in cows and calf pairs. Taking into account several co-factors that influenced test results, which could not easily be excluded, further studies may be warranted with larger cow-calf pair populations. In conclusion, vitamin D3 concentration in calves is not affected by the negative energy balance of dams in the parturition period.


1987 ◽  
Vol 242 (3) ◽  
pp. 721-728 ◽  
Author(s):  
R G Knowles ◽  
J P McCabe ◽  
S J Beevers ◽  
C I Pogson

The characteristics and site of inhibition of gluconeogenesis by endotoxin were investigated in liver cells isolated from control and endotoxin-treated rats. Endotoxin treatment was associated with inhibition (40-50%) of gluconeogenesis from lactate plus pyruvate over a range of concentrations of substrate and of oleate and with or without glucose or glucagon. Similar inhibition was observed with asparagine, proline, glutamine, alanine and a substrate mixture, but not with glycerol, glyceraldehyde, dihydroxyacetone or endogenous substrates. There was no change in cellular ATP content or in the rates of ketogenesis or ureogenesis from asparagine, proline or glutamine. Other effects on isotopic fluxes, metabolite contents, enzyme activities and control coefficients were consistent with the suggestion that the effects of endotoxin on gluconeogenesis are exerted at the level of phosphofructokinase-1, and not at phosphoenolpyruvate carboxykinase, pyruvate kinase, pyruvate carboxylase or glucokinase.


Sign in / Sign up

Export Citation Format

Share Document