scholarly journals Effect of nanoparticles concentration on electromagnetic-assisted oil recovery using ZnO nanofluids

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244738
Author(s):  
Muhammad Adil ◽  
Keanchuan Lee ◽  
Hasnah Mohd Zaid ◽  
M. Fadhllullah A. Shukur ◽  
Takaaki Manaka

Utilization of metal-oxide nanoparticles (NPs) in enhanced oil recovery (EOR) has generated substantial recent research interest in this area. Among these NPs, zinc oxide nanoparticles (ZnO-NPs) have demonstrated promising results in improving oil recovery due to their prominent thermal properties. These nanoparticles can also be polarized by electromagnetic (EM) field, which offers a unique Nano-EOR approach called EM-assisted Nano-EOR. However, the impact of NPs concentrations on oil recovery mechanism under EM field has not been well established. For this purpose, ZnO nanofluids (ZnO-NFs) of two different particle sizes (55.7 and 117.1 nm) were formed by dispersing NPs between 0.01 wt.% to 0.1 wt.% in a basefluid of sodium dodecylbenzenesulfonate (SDBS) and NaCl to study their effect on oil recovery mechanism under the electromagnetic field. This mechanism involved parameters, including mobility ratio, interfacial tension (IFT) and wettability. The displacement tests were conducted in water-wet sandpacks at 95˚C, by employing crude oil from Tapis. Three tertiary recovery scenarios have been performed, including (i) SDBS surfactant flooding as a reference, (ii) ZnO-NFs flooding, and (iii) EM-assisted ZnO-NFs flooding. Compare with incremental oil recovery from surfactant flooding (2.1% original oil in place/OOIP), nanofluid flooding reaches up to 10.2% of OOIP at optimal 0.1 wt.% ZnO (55.7 nm). Meanwhile, EM-assisted nanofluid flooding at 0.1 wt.% ZnO provides a maximum oil recovery of 10.39% and 13.08% of OOIP under EM frequency of 18.8 and 167 MHz, respectively. By assessing the IFT/contact angle and mobility ratio, the optimal NPs concentration to achieve a favorable ER effect and interfacial disturbance is determined, correlated to smaller hydrodynamic-sized nanoparticles that cause strong electrostatic repulsion between particles.

Nano Hybrids ◽  
2013 ◽  
Vol 4 ◽  
pp. 61-85
Author(s):  
Mohd Farhan Khan ◽  
Akhter H. Ansari ◽  
M. Hameedullah ◽  
M.B. Lohani ◽  
Mohammad Mezbaul Alam ◽  
...  

Since few decades, the fabrications of metal oxide nanoparticles (MO-Nps) as well as their uses in various segments have been increased manifolds. An easy effort to produce an important category of MO-Nps as Zinc oxide nanoparticles (ZnO-Nps), with the assistance of mechano-solution method at various low temperatures, introducing Zinc acetate dihydrate and Sodium hydroxide into the molar solution of C19H42NBr complex (Cetrimonium bromide, CTAB) for much less than an hour was projected. The impact of this method performed at two different ranges of process temperatures was studied and the magnitude of the ZnO-Nps (like particle size, morphology and L/D dimensions) has been reported. On the top of this, the morphological study of these Nps has been presented. The characterization of the synthesized Nps was carried out with the help of SEM with EDS, XRD, UV-Vis spectroscopy. The scanning electron microscopy has revealed the synthesis of peanut-shaped ZnO nanobunches (NBs) at two different ranges of temperature. An overall viable growth of the solitary nanoparticles constituting of ZnO-NBs has also been put forth. Hence, the effect of temperature on C19H42NBr complex (stabilizer) has been reported. In addition, a postulated model depicting the relationship of the temperature effect on the process parameters of ZnO-NBs has also been floated. The Gram +ve bacteria, Bacillus subtilis is a rod shaped bacteria which is commonly known as normal gut commensal in humans. Due to the emergence of anti-biotic resistant drugs, alternate medications are under primary considerations. A noteworthy experimentation was concerned with anti-bacterial activity of therapeutically viable Gram +ve bacteria, Bacillus subtilis and it was found that reported ZnO-NBs have become the promising entities for terminating the growth of these bacterias.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1975 ◽  
Author(s):  
Muhammad Adil ◽  
Kean Chuan Lee ◽  
Hasnah Mohd Zaid ◽  
Takaaki Manaka

The utilization of metal-oxide nanoparticles in enhanced oil recovery (EOR) has generated considerable research interest to increase the oil recovery. Among these nanoparticles, alumina nanoparticles (Al2O3-NPs) have proved promising in improving the oil recovery mechanism due to their prominent thermal properties. However, more significantly, these nanoparticles, coupled with electromagnetic (EM) waves, can be polarized to reduce water/oil mobility ratio and create disturbances at the oil/nanofluid interface, so that oil can be released from the reservoir rock surfaces and travelled easily to the production well. Moreover, alumina exists in various transition phases (γ, δ, θ, κ, β, η, χ), providing not only different sizes and morphologies but phase-dependent dielectric behavior at the applied EM frequencies. In this research, the oil recovery mechanism under EM fields of varying frequencies was investigated, which involved parameters such as mobility ratio, interfacial tension (IFT) and wettability. The displacement tests were conducted in water-wet sandpacks at 95 °C, by employing crude oil from Tapis. Alumina nanofluids (Al2O3-NFs) of four different phases (α, κ, θ and γ) and particle sizes (25–94.3 nm) were prepared by dispersing 0.01 wt. % NPs in brine (3 wt. % NaCl) together with SDBS as a dispersant. Three sequential injection scenarios were performed in each flooding scheme: (i) preflushes brine as a secondary flooding, (ii) conventional nano/EM-assisted nanofluid flooding, and (iii) postflushes brine to flush NPs. Compared to conventional nanofluid flooding (3.03–11.46% original oil in place/OOIP) as incremental oil recovery, EM-assisted nanofluid flooding provided an increase in oil recovery by approximately 4.12–12.90% of OOIP for different phases of alumina. It was established from these results that the recovery from EM-assisted nanofluid flooding is itself dependent on frequency, which is associated with good dielectric behavior of NPs to formulate the oil recovery mechanism including (i) mobility ratio improvement due to an electrorheological (ER) effect, (ii) interfacial disturbances by the oil droplet deformation, and (iii) wettability alteration by increased surface-free energy.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 584
Author(s):  
Omnia M. Elshayb ◽  
Khaled Y. Farroh ◽  
Heba E. Amin ◽  
Ayman M. Atta

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 849 ◽  
Author(s):  
Ana Rita Pinho ◽  
Sandra Rebelo ◽  
Maria de Lourdes Pereira

Zinc oxide nanoparticles (ZnO NPs) are among nanoscale materials, attracting increasing attention owing to their exceptional set of characteristics, which makes these engineered nanoparticles a great option for improving the quality and effectiveness of diagnosis and treatment. The capacity of ZnO NPs to induce reactive oxygen species (ROS) production, DNA damage, and apoptosis represents a promise for their use in both cancer therapy and microbial treatment. However, their intrinsic toxicity together with their easy entrance and accumulation in organism have raised some concerns regarding the biomedical use of these NPs. Several studies have reported that ZnO NPs might induce cytotoxic effects on the male reproductive system, compromising male fertility. Despite some advances in this area, the knowledge of the effects of ZnO NPs on male fertility is still scarce. Overall, a brief outline of the major ZnO NPs biomedical applications and promises in terms of diagnostic and therapeutic use will also be explored. Further, this review intends to discuss the effect of ZnO NPs exposure on the male reproductive system and speculate their effects on male (in)fertility.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 94 ◽  
Author(s):  
Laura Corredor ◽  
Maen Husein ◽  
Brij Maini

Recent studies revealed higher polymer flooding performance upon adding metal oxide nanoparticles (NPs) to acrylamide-based polymers during heavy oil recovery. The current study considers the effect of TiO2, Al2O3, in-situ prepared Fe(OH)3 and surface-modified SiO2 NPs on the performance of xanthan gum (XG) solutions to enhance heavy oil recovery. Surface modification of the SiO2 NPs was achieved by chemical grafting with 3-(methacryloyloxy)propyl]trimethoxysilane (MPS) and octyltriethoxysilane (OTES). The nanopolymer sols were characterized by their rheological properties and ζ-potential measurements. The efficiency of the nanopolymer sols in displacing oil was assessed using a linear sand-pack at 25 °C and two salinities (0.3 wt % and 1.0 wt % NaCl). The ζ-potential measurements showed that the NP dispersions in deionized (DI) water are unstable, but their colloidal stability improved in presence of XG. The addition of unmodified and modified SiO2 NPs increased the viscosity of the XG solution at all salinities. However, the high XG adsorption onto the surface of Fe(OH)3, Al2O3, and TiO2 NPs reduced the viscosity of the XG solution. Also, the NPs increased the cumulative oil recovery between 3% and 9%, and between 1% and 5% at 0 wt % and 0.3 wt % NaCl, respectively. At 1.0 wt % NaCl, the NPs reduced oil recovery by XG solution between 5% and 12%, except for Fe(OH)3 and TiO2 NPs. These NPs increased the oil recovery between 2% and 3% by virtue of reduced polymer adsorption caused by the alkalinity of the Fe(OH)3 and TiO2 nanopolymer sols.


2021 ◽  
Vol 37 (4) ◽  
pp. 911-921
Author(s):  
Femina. F ◽  
H. Asia Thabassoom ◽  
S. Auxilia Ruby ◽  
J. Felicita Florence

Plant extract mediated metal or metal oxide nanoparticles is a promising alternate to the chemical and physical methods. Application of nanoparticles in various fields get increased widely due to their properties. Current study involves the eco-friendly method of synthesis and pharmacological applications of zinc oxide nanoparticles (ZnO-NPs) using the aqueous beetroot (Beta vulgaris) extract. Aqueous Beta vulgaris extract has multiple bio-active phytochemicals especially antioxidants like anthocyanins and betacyanins, also reported a rich source of minerals. Synthesized ZnONPs were characterized with the aid of UV-Vis spectroscopy, FTIR, SEM, XRDand EDX. Antibacterial results suggests that, Beta vulgaris mediated ZnONPspossessthe maximum zone of inhibition against Escherichia coli then Staphylococcus aureus. On anti-fungal activity synthesized ZnONPS revealed greater inhibitory effect against Candida albicans fungi than the Aspergillusflavus. Synthesized ZnONPs exhibits the noticeable pharmacological activities against the anti-diabetic and anti-cancer activities (MCF-7 cell line, IC50=35.4µg/ml). This study has suggested an effective replacement for the hazardous chemical methods and lead to a cost-effective, environmentally -friendly method which can also be used as an antimicrobial, anti-diabetic and anti-cancer agents.


2020 ◽  
Vol 3 (1) ◽  
pp. 15-27
Author(s):  
Priyankari Bhattacharya ◽  
Kasturi Chatterjee ◽  
Snehasikta Swarnakar ◽  
Sathi Banerjee

Application of metal oxide nanoparticles for treatment of melanoma cells and microbes is being investigated. Zinc oxide nanoparticles (ZnO NPs) deserve special mention where particles cause destruction of melanoma cells with minimal damage to healthy cells. In the present study, pure phase ZnO NPs with particle size of 3.1 nm were synthesized by green route using algal extract. Skin melanoma (B16F10) cells were treated with synthesized ZnO NP and compared with commercial ZnO NPs and analysed for ED50 for cellular viability using 3% (w/v) of the doses. Sensitivity of B16F10 cells towards green synthesized ZnO NP was found to be more than commercial ZnO NPs. Results showed greater reduction in viability of cells exposed to green synthesized ZnO NPs and with increasing dose of the ZnO NPs, percentage viability of cells gradually reduced. 50% decrease in cellular viability (ED50) was obtained for green synthesized ZnO NP at 3% dose while commercial ZnO exhibited ED50 at 6% of doses. The ZnO NP also showed antimicrobial activity against Pseudomonas sp. and Staphylococcus sp. Zone of inhibition (ZOI) exhibited by Pseudomonas aeruginosa and Staphylococcus aureus for disc diffusion and well diffusion assay was around 10-22 mm and 9-12mm respectively.


Sign in / Sign up

Export Citation Format

Share Document