scholarly journals A finite volume-based model for the hydrothermal behavior of soil under freeze–thaw cycles

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252680
Author(s):  
Tianfei Hu ◽  
Tengfei Wang

Freeze–thaw cycles in soil are driven by water migration, phase transitions, and heat transfer, which themselves are closely coupled variables in the natural environment. To simulate this complex periglacial process at different time and length scales, a multi-physics model was established by solving sets of equations describing fluid flow and heat transfer, and a dynamic equilibrium equation for phase changes in moisture. This model considers the effects of water–ice phase changes on the hydraulic and thermal properties of soil and the effect of latent heat during phase transition. These equations were then discretized by using the finite volume method and solved using iteration. The open-source software OpenFOAM was used to generate computational code for simulation of coupled heat and fluid transport during freezing and thawing of soil. A set of laboratory freezing tests considering two thermal boundary conditions were carried out, of which the results were obtained to verify the proposed model. In general, the numerical solutions agree well with the measured data. A railway embankment problem, incorporating soil hydrothermal behavior in response to seasonal variations in surface temperature, was finally solved with the finite volume-based approach, indicating the algorithm’s robustness and flexibility.

2001 ◽  
Vol 124 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J. Cadafalch ◽  
C. D. Pe´rez-Segarra ◽  
R. Co`nsul ◽  
A. Oliva

This work presents a post-processing tool for the verification of steady-state fluid flow and heat transfer finite volume computations. It is based both on the generalized Richardson extrapolation and the Grid Convergence Index GCI. The observed order of accuracy and a error band where the grid independent solution is expected to be contained are estimated. The results corresponding to the following two and three-dimensional steady-state simulations are post-processed: a flow inside a cavity with moving top wall, an axisymmetric turbulent flow through a compressor valve, a premixed methane/air laminar flat flame on a perforated burner, and the heat transfer from an isothermal cylinder enclosed by a square duct. Discussion is carried out about the certainty of the estimators obtained with the post-processing procedure. They have been shown to be useful parameters in order to assess credibility and quality to the reported numerical solutions.


2004 ◽  
Vol 15 (02) ◽  
pp. 307-319 ◽  
Author(s):  
AHMAD AL-ZOUBI ◽  
GUNTHER BRENNER

In the present paper, a comparative study of numerical solutions for steady flows with heat transfer based on the finite volume method (FVM) and the relatively new lattice Boltzmann method (LBM) is presented. In the last years, the LB methods have challenged the classical FV methods to solve the Navier–Stokes equations and have proven to be superior in accuracy and efficiency for certain applications. Most of these studies were related to the transport of mass and momentum. In the meantime, significant effort has been invested in the application of the LBM to simulate flows including heat transfer. The studies in the present paper are the analysis of performance and accuracy aspects of LBM applied to the prediction of these flows. For a fully developed laminar flow between parallel plates, analytical solutions for the heat transfer in fully developed thermal boundary layers are available and may be compared with the respective numerical results. Finally, a hybrid approach is proposed to circumvent numerical problems of the thermal LB methods.


1993 ◽  
Vol 24 (2-3) ◽  
pp. 95-110 ◽  
Author(s):  
H. Engelmark ◽  
U. Svensson

This paper presents a new method for handling the phase change process in numerical simultations of freezing and thawing soils. Moisture and heat transfer in soils subjected to both freezing and thawing are discussed. Simulated freezing results of temperature and total water content (water + ice) are compared with experimental data reported by Jame (1977). Simulated and experimental results were similar. The effects of different time-dependent temperature boundary conditions were evaluated and discussed. The method was used both with abrupt and smooth temperature boundary conditions and both resulted in stable numerical solutions. Finally, results from a simulation of a freezing and thawing cycle are presented and discussed qualitatively.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


2012 ◽  
Vol 253-255 ◽  
pp. 456-461
Author(s):  
Yan Fu Qin ◽  
Bin Tian ◽  
Gang Xu ◽  
Xiao Chun Lu

Frost resistance research is one of the important subject of concrete durability, however strength criteria is an important part of the study of mechanical behavior of concrete. So far, about concrete failure criteria are almost for normal concrete, which the domestic and overseas scholars have comparative detailed research in every respect to it, and to freeze-thaw damage of concrete but few research. Based on the summary of the existing ordinary concrete strength and failure criteria in normal state and after freeze-thaw damage,this paper have a brief comment of failure criteria on concrete after freeze-thaw damage. For later research about concrete strength and failure criteria under freezing and thawing cycle provide the reference.


Sign in / Sign up

Export Citation Format

Share Document