scholarly journals Deep learning-based prediction of future growth potential of technologies

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252753
Author(s):  
June Young Lee ◽  
Sejung Ahn ◽  
Dohyun Kim

Research papers are a repository of information on the various elements that make up science and technology R&D activities. Generating knowledge maps based on research papers enables identification of specific areas of scientific and technical research as well as understanding of the flow of knowledge between those areas. Recently, as the number of electronic publishing and informatics archives along with the amount of accumulated knowledge related to science and technology has proliferated, the need to utilize the meta-knowledge obtainable from research papers has increased. Therefore, this study devised a model based on meta-knowledge (i.e., text information including citations, abstracts, area codes) for prediction of future growth potential using deep learning algorithms and investigated the applicability of the various forms of meta-knowledge to the prediction of future growth potential. It also proposes how to select the promising technology clusters based on the proposed model.

2020 ◽  
Author(s):  
Loren Brandt ◽  
John Litwack ◽  
Elitza Mileva ◽  
Luhang Wang ◽  
Yifan Zhang ◽  
...  

Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
James Dzisi Gadze ◽  
Akua Acheampomaa Bamfo-Asante ◽  
Justice Owusu Agyemang ◽  
Henry Nunoo-Mensah ◽  
Kwasi Adu-Boahen Opare

Software-Defined Networking (SDN) is a new paradigm that revolutionizes the idea of a software-driven network through the separation of control and data planes. It addresses the problems of traditional network architecture. Nevertheless, this brilliant architecture is exposed to several security threats, e.g., the distributed denial of service (DDoS) attack, which is hard to contain in such software-based networks. The concept of a centralized controller in SDN makes it a single point of attack as well as a single point of failure. In this paper, deep learning-based models, long-short term memory (LSTM) and convolutional neural network (CNN), are investigated. It illustrates their possibility and efficiency in being used in detecting and mitigating DDoS attack. The paper focuses on TCP, UDP, and ICMP flood attacks that target the controller. The performance of the models was evaluated based on the accuracy, recall, and true negative rate. We compared the performance of the deep learning models with classical machine learning models. We further provide details on the time taken to detect and mitigate the attack. Our results show that RNN LSTM is a viable deep learning algorithm that can be applied in the detection and mitigation of DDoS in the SDN controller. Our proposed model produced an accuracy of 89.63%, which outperformed linear-based models such as SVM (86.85%) and Naive Bayes (82.61%). Although KNN, which is a linear-based model, outperformed our proposed model (achieving an accuracy of 99.4%), our proposed model provides a good trade-off between precision and recall, which makes it suitable for DDoS classification. In addition, it was realized that the split ratio of the training and testing datasets can give different results in the performance of a deep learning algorithm used in a specific work. The model achieved the best performance when a split of 70/30 was used in comparison to 80/20 and 60/40 split ratios.


EuroChoices ◽  
2020 ◽  
Author(s):  
Claire Jack ◽  
Austen Ashfield ◽  
Adewale Henry Adenuga ◽  
Conall Mullan

2021 ◽  
Vol 11 (13) ◽  
pp. 6017
Author(s):  
Gerivan Santos Junior ◽  
Janderson Ferreira ◽  
Cristian Millán-Arias ◽  
Ramiro Daniel ◽  
Alberto Casado Junior ◽  
...  

Cracks are pathologies whose appearance in ceramic tiles can cause various damages due to the coating system losing water tightness and impermeability functions. Besides, the detachment of a ceramic plate, exposing the building structure, can still reach people who move around the building. Manual inspection is the most common method for addressing this problem. However, it depends on the knowledge and experience of those who perform the analysis and demands a long time and a high cost to map the entire area. This work focuses on automated optical inspection to find faults in ceramic tiles performing the segmentation of cracks in ceramic images using deep learning to segment these defects. We propose an architecture for segmenting cracks in facades with Deep Learning that includes an image pre-processing step. We also propose the Ceramic Crack Database, a set of images to segment defects in ceramic tiles. The proposed model can adequately identify the crack even when it is close to or within the grout.


2017 ◽  
Vol 20 (2) ◽  
pp. 35-52 ◽  
Author(s):  
Sumanjeet Singh ◽  
Minakshi Paliwal

The MSME sector occupies a position of strategic significance in the Indian economic structure. This sector contributes nearly eight per cent to country’s GDP, employing over 80 million people in nearly 36 million widely-dispersed enterprises across the country; accounting for 45 per cent of manufactured output, 40 per cent of the country’s total export, and producing more than 8000 valueadded products ranging from traditional to high-tech. Furthermore, these enterprises are the nurseries for innovation and entrepreneurship, which will be key to the future growth of India. It is also an acknowledged fact that this sector can help realise the target of the proposed National Manufacturing Policy to enhance the share of manufacturing in GDP to 25 per cent and to create 100 million jobs by the end of 2022, as well as to foster growth and take India from its present two trillion dollar economy to a 20 trillion dollar economy. Despite the sector’s high enthusiasm and inherent capabilities to grow, its growth story still faces a number of challenges. In this light, the present paper examines the role of Indian MSMEs in India’s economic growth and explores various problems faced by the sector. The paper also attempts to discuss various policy measures undertaken by the Government to strengthen Indian MSMEs. Finally, the paper proposes strategies aimed at strengthening the sector to enable it to unleash its growth potential and help make India a 20 trillion dollar economy.


Sign in / Sign up

Export Citation Format

Share Document