scholarly journals Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255341
Author(s):  
Maxim Terekhov ◽  
Ibrahim A. Elabyad ◽  
Laura M. Schreiber

The development of novel multiple-element transmit-receive arrays is an essential factor for improving B1+ field homogeneity in cardiac MRI at ultra-high magnetic field strength (B0 > = 7.0T). One of the key steps in the design and fine-tuning of such arrays during the development process is finding the default driving phases for individual coil elements providing the best possible homogeneity of the combined B1+-field that is achievable without (or before) subject-specific B1+-adjustment in the scanner. This task is often solved by time-consuming (brute-force) or by limited efficiency optimization methods. In this work, we propose a robust technique to find phase vectors providing optimization of the B1-homogeneity in the default setup of multiple-element transceiver arrays. The key point of the described method is the pre-selection of starting vectors for the iterative solver-based search to maximize the probability of finding a global extremum for a cost function optimizing the homogeneity of a shaped B1+-field. This strategy allows for (i) drastic reduction of the computation time in comparison to a brute-force method and (ii) finding phase vectors providing a combined B1+-field with homogeneity characteristics superior to the one provided by the random-multi-start optimization approach. The method was efficiently used for optimizing the default phase settings in the in-house-built 8Tx/16Rx arrays designed for cMRI in pigs at 7T.

Author(s):  
Eliot Rudnick-Cohen ◽  
Jeffrey W. Herrmann ◽  
Shapour Azarm

Operating unmanned aerial vehicles (UAVs) over inhabited areas requires mitigating the risk to persons on the ground. Because the risk depends upon the flight path, UAV operators need approaches (techniques) that can find low-risk flight paths between the mission’s start and finish points. In some areas, the flight paths with the lowest risk are excessively long and indirect because the least-populated areas are too remote. Thus, UAV operators are concerned about the tradeoff between risk and flight time. Although there exist approaches for assessing the risks associated with UAV operations, existing risk-based path planning approaches have considered other risk measures (besides the risk to persons on the ground) or simplified the risk assessment calculation. This paper presents a risk assessment technique and bi-objective optimization methods to find low-risk and time (flight path) solutions and computational experiments to evaluate the relative performance of the methods (their computation time and solution quality). The methods were a network optimization approach that constructed a graph for the problem and used that to generate initial solutions that were then improved by a local approach and a greedy approach and a fourth method that did not use the network solutions. The approaches that improved the solutions generated by the network optimization step performed better than the optimization approach that did not use the network solutions.


Author(s):  
Eliot Rudnick-Cohen ◽  
Jeffrey W. Herrmann ◽  
Shapour Azarm

Operating unmanned aerial vehicles (UAVs) over inhabited areas requires mitigating the risk to persons on the ground. Because the risk depends upon the flight path, UAV operators need approaches that can find low-risk flight paths between the mission's start and finish points. Because the flight paths with the lowest risk could be excessively long and indirect, UAV operators are concerned about the tradeoff between risk and flight time. This paper presents a risk assessment technique and bi-objective optimization methods to find low-risk and time (flight path) solutions and computational experiments to evaluate the relative performance of the methods (their computation time and solution quality). The methods were a network optimization approach that constructed a graph for the problem and used that to generate initial solutions that were then improved by a local approach and a greedy approach and a fourth method that did not use the network solutions. The approaches that improved the solutions generated by the network optimization step performed better than the optimization approach that did not use the network solutions.


2006 ◽  
Vol 128 (10) ◽  
pp. 1031-1040 ◽  
Author(s):  
Jason M. Porter ◽  
Marvin E. Larsen ◽  
J. Wesley Barnes ◽  
John R. Howell

The design of radiant enclosures is an active area of research in radiation heat transfer. When design variables are discrete such as for radiant heater arrays with on-off control of individual heaters, current methods of design optimization fail. This paper reports the development of a metaheuristic thermal radiation optimization approach. Two metaheuristic optimization methods are explored: simulated annealing and tabu search. Both approaches are applied to a combinatorial radiant enclosure design problem. Configuration factors are used to develop a dynamic neighborhood for the tabu search algorithm. Results are presented from the combinatorial optimization problem. Tabu search with a problem specific dynamic neighborhood definition is shown to find better solutions than the benchmark simulated annealing approach in less computation time.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 998
Author(s):  
Sarah Stirrat ◽  
Mohammed Z. Afsar ◽  
Edmondo Minisci

Our concern in this paper is in the fine-tuning of the arbitrary parameters within the upstream turbulence structure for the acoustic spectrum of a rapid-distortion theory (RDT)-based model of trailing-edge noise. RDT models are based on an appropriate asymptotic limit of the Linearized Euler Equations and apply when the interaction time of the turbulence with the surface edge discontinuity is small compared to the eddy turnover time. When an arbitrary transversely sheared jet mean flow convects a finite region of nonhomogeneous turbulence, the acoustic spectrum of the pressure field scattered by the trailing-edge depends on (among other things) the upstream turbulence via the Fourier transform of the correlation function, R22 (where subscript 2 refers to a co-ordinate surface normal to the plate). We show that the length and time scale parameters that govern the spatial and temporal de-correlation of R22 can be found using formal optimization methods to avoid any uncertainty in their selection by hand-tuning. We assess various optimization methods that are broadly categorized into an ‘evolutionary’ and ‘non-evolutionary’ paradigm. That is, we optimize the acoustic spectrum using the Multi-Start algorithm, Particle Swarm Optimization and the Multi-Population Adaptive Inflationary Differential Evolution Algorithm. The optimization is based upon different objective functions for the acoustic spectrum and/or turbulence structure. We show that this approach, while resulting in the total modest increase in computation time (on average 2 h), gives excellent prediction over most frequencies (within 2–4 dB) where the trailing-edge noise associated amplification in sound exists.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6069
Author(s):  
Sajjad Haider ◽  
Peter Schegner

It is important to understand the effect of increasing electric vehicles (EV) penetrations on the existing electricity transmission infrastructure and to find ways to mitigate it. While, the easiest solution is to opt for equipment upgrades, the potential for reducing overloading, in terms of voltage drops, and line loading by way of optimization of the locations at which EVs can charge, is significant. To investigate this, a heuristic optimization approach is proposed to optimize EV charging locations within one feeder, while minimizing nodal voltage drops, cable loading and overall cable losses. The optimization approach is compared to typical unoptimized results of a monte-carlo analysis. The results show a reduction in peak line loading in a typical benchmark 0.4 kV by up to 10%. Further results show an increase in voltage available at different nodes by up to 7 V in the worst case and 1.5 V on average. Optimization for a reduction in transmission losses shows insignificant savings for subsequent simulation. These optimization methods may allow for the introduction of spatial pricing across multiple nodes within a low voltage network, to allow for an electricity price for EVs independent of temporal pricing models already in place, to reflect the individual impact of EVs charging at different nodes across the network.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 495
Author(s):  
Jessica Thomsen ◽  
Noha Saad Hussein ◽  
Arnold Dolderer ◽  
Christoph Kost

Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This paper examines the influence of the foresight horizon on local energy systems using the model DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy system with a connection to the superior electricity grid level. It is shown that with the advantage of a significantly reduced run-time, a limited foresight yields fairly similar results when the input parameters show a stable development. With unexpected, shock-like events, limited foresight shows more realistic results since it cannot foresee the sudden parameter changes. In general, the limited foresight approach tends to invest into generation technologies with low variable cost and avoids investing into demand reduction or efficiency with high upfront costs as it cannot compute the benefits over the time span necessary for full cost recovery. These aspects should be considered when choosing the foresight horizon.


2021 ◽  
Author(s):  
Nitin D. Pagar ◽  
Amit R. Patil

Abstract Exhaust expansion joints, also known as compensators, are found in a variety of applications such as gas turbine exhaust pipes, generators, marine propulsion systems, OEM engines, power units, and auxiliary equipment. The motion compensators employed must have accomplished the maximum expansion-contraction cycle life while imposing the least amount of stress. Discrepancies in the selecting of bellows expansion joint design parameters are corrected by evaluating stress-based fatigue life, which is challenging owing to the complicated form of convolutions. Meridional and circumferential convolution stress equations that influencing fatigue cycles are evaluated and verified with FEA. Fractional factorial Taguchi L25 matrix is used for finding the optimal configurations. The discrete design parameters for the selection of the suitable configuration of the compensators are analysed with the help of the MADM decision making techniques. The multi-response optimization methods GRA, AHP, and TOPSIS are used to determine the parametric selection on a priority basis. It is seen that weighing distribution among the responses plays an important role in these methods and GRA method integrated with principal components shows best optimal configurations. Multiple regression technique applied to these methods also shows that PCA-GRA gives better alternate solutions for the designer unlike the AHP and TOPSIS method. However, higher ranked Taguchi run obtained in these methods may enhance the suitable selection of different design configurations. Obtained PCA-GRG values by Taguchi, Regression and DOE are well matched and verified for the all alternate solutions. Further, it also shows that stress based fatigue cycles obtained in this analysis for the L25 run indicates the range varying from 1.13 × 104 cycles to 9.08 × 105 cycles, which is within 106 cycles. This work will assist the design engineer for selecting the discrete parameters of stiff compensators utilized in power plant thermal appliances.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 410
Author(s):  
Johnnie Gray ◽  
Stefanos Kourtis

Tensor networks represent the state-of-the-art in computational methods across many disciplines, including the classical simulation of quantum many-body systems and quantum circuits. Several applications of current interest give rise to tensor networks with irregular geometries. Finding the best possible contraction path for such networks is a central problem, with an exponential effect on computation time and memory footprint. In this work, we implement new randomized protocols that find very high quality contraction paths for arbitrary and large tensor networks. We test our methods on a variety of benchmarks, including the random quantum circuit instances recently implemented on Google quantum chips. We find that the paths obtained can be very close to optimal, and often many orders or magnitude better than the most established approaches. As different underlying geometries suit different methods, we also introduce a hyper-optimization approach, where both the method applied and its algorithmic parameters are tuned during the path finding. The increase in quality of contraction schemes found has significant practical implications for the simulation of quantum many-body systems and particularly for the benchmarking of new quantum chips. Concretely, we estimate a speed-up of over 10,000× compared to the original expectation for the classical simulation of the Sycamore `supremacy' circuits.


2021 ◽  
Vol 10 (2) ◽  
pp. 11
Author(s):  
Yasir Ahmed Hamza ◽  
Marwan Dahar Omer

In this study, a new approach of image encryption has been proposed. This method is depends on the symmetric encryption algorithm RC4 and Rossler chaotic system. Firstly, the encryption key is employed to ciphering a plain image using RC4 and obtains a ciphered-image. Then, the same key is used to generate the initial conditions of the Rossler system. The system parameters and the initial conditions are used as the inputs for Rossler chaotic system to generate the 2-dimensional array of random values. The resulted array is XORed with the ciphered-image to obtain the final encrypted-image. Based on the experimental results, the proposed method has achieved high security and less computation time. Also, the proposed method can be resisted attacks like (statistical, brute-force, and differential).


Sign in / Sign up

Export Citation Format

Share Document