scholarly journals Prevalence of toxigenic fungi and mycotoxins in Arabic coffee (Coffea arabica): Protective role of traditional coffee roasting, brewing and bacterial volatiles

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259302
Author(s):  
Wadha Al Attiya ◽  
Zahoor Ul Hassan ◽  
Roda Al-Thani ◽  
Samir Jaoua

Fungal infection and synthesis of mycotoxins in coffee leads to significant economic losses. This study aimed to investigate the prevalence of toxigenic fungi, their metabolites, and the effect of traditional roasting and brewing on ochratoxin A (OTA) and aflatoxins (AFs) contents of naturally contaminated coffee samples. In addition, in vivo biocontrol assays were performed to explore the antagonistic activities of Bacillus simplex 350–3 (BS350-3) on the growth and mycotoxins synthesis of Aspergillus ochraceus and A. flavus. The relative density of A. niger, A. flavus, Penicillium verrucosum and A. carbonarius on green coffee bean was 60.82%, 7.21%, 3.09% and 1.03%, respectively. OTA contents were lowest in green coffee beans (2.15 μg/kg), followed by roasted (2.76 μg/kg) and soluble coffee (8.95 μg/kg). Likewise, AFs levels were highest in soluble coffee (90.58 μg/kg) followed by roasted (33.61 μg/kg) and green coffee (9.07 μg/kg). Roasting naturally contaminated coffee beans at three traditional methods; low, medium and high, followed by brewing resulted in reduction of 58.74% (3.50 μg/kg), 60.88% (3.72 μg/kg) and 64.70% (4.11 μg/kg) in OTA and 40.18% (34.65 μg/kg), 47.86% (41.17 μg/kg) and 62.38% (53.73 μg/kg) AFs contents, respectively. Significant inhibitions of AFs and OTA synthesis by A. flavus and A. carbonarius, respectively, on infected coffee beans were observed in presence of Bacillus simplex BS350-3 volatiles. Gas chromatography mass spectrochemistry (GC-MS/MS) analysis of head-space BS350-3 volatiles showed quinoline, benzenemethanamine and 1-Octadecene as bioactive antifungal molecules. These findings suggest that marketed coffee samples are generally contaminated with OTA and AFs, with a significant level of roasted and soluble coffee contaminated above EU permissible limits for OTA. Further, along with coffee roasting and brewing; microbial volatiles can be optimized to minimize the dietary exposure to mycotoxins.

2004 ◽  
Vol 50 (11) ◽  
pp. 985-988 ◽  
Author(s):  
Maria Helena Pelegrinelli Fungaro ◽  
Marciane Magnani ◽  
Laurival Antônio Vilas-Boas ◽  
Patrícia Cristina Vissotto ◽  
Márcia Cristina Furlaneto ◽  
...  

Ochratoxin A (OA) is a mycotoxin that has been found in coffee beans and coffee beverages. Its toxicological profile includes carcinogenicity, nephrotoxicity, and immunotoxicity. Aspergillus ochraceus is the major species responsible for OA production in Brazilian coffee beans. The genetic relationships among 25 A. ochraceus strains collected from Brazilian coffee-bean samples were determined based on RAPD and internal transcribed spacer (ITS) sequence data. The isolates were resolved into 2 distinct groups, one with 4 strains (group A) and the other with 21 strains (group B). Specific nucleotide variations characterizing group A and B were found for both ITS1 and ITS2 regions. Group B is a new group proposed here to accommodate the majority of the Brazilian isolates. Each group was found to contain both toxigenic and nontoxigenic strains, indicating that there is no association between molecular genotypes and the ability to produce OA.Key words: Aspergillus ochraceus, ochratoxin A, ITS region (ITS1–5.8S–ITS2), RAPD.


1983 ◽  
Vol 46 (11) ◽  
pp. 965-968 ◽  
Author(s):  
MICHAEL E. STACK ◽  
PHILIP B. MISLIVEC ◽  
TURGUT DENIZEL ◽  
REGINA GIBSON ◽  
ALBERT E. POHLAND

Isolates from Aspergillus ochraceus obtained from green coffee beans were cultured on rice and water. After 20 d of growth the cultures were extracted with chloroform and the extracts were analyzed by high performance liquid chromatography for ochratoxin A (OA), ochratoxin B (OB), xanthomegnin (X), viomellein (V) and vioxanthin (VX). Forty-three percent of the isolates produced OA at an average level of 397 μg of toxin/g rice, 17% produced OB at an average level of 312 μg/g, and 84% produced X, V, and VX at an average level of 281, 417 and 386 μg/g, respectively. The highest levels of toxin production were OA, 2088 μg/g; OB, 3375 μg/g; X, 1562 μg/g; V, 2514 μg/g; and VX, 2054 μg/g. VX has not previously been reported as an A. ochraceus metabolite.


1987 ◽  
Vol 97 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Haruo Tsubouchi ◽  
Katsuhiko Yamamoto ◽  
Kazuo Hisada ◽  
Yoshio Sakabe ◽  
Shun- ichi Udagawa

1998 ◽  
Vol 46 (2) ◽  
pp. 673-675 ◽  
Author(s):  
Maurice Blanc ◽  
Alain Pittet ◽  
Rafael Muñoz-Box ◽  
Rinantonio Viani

Jurnal NERS ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Joko Setyono ◽  
Dwi Adi Nugroho ◽  
Mustofa Mustofa ◽  
Saryono Saryono

Introduction: Obesity prevalence is estimated increases, reached 19.1% of the population aged 15 years and over. This study aimed to determine the differences of the anti- obesity effect of orlistat, an extract of green coffee beans (Coffea canephora robusta), and its combination to the adiponectin levels and lipid profi le. Method: This research was true experimental post -test only with control group design with completely randomized design (CRD). Experimental animals (Rattus novergicus) were divided into 6 group, group 1 ( negative control ), group 2 ( positive control ), group 3 was group of obese rats fed orlistat dose of 15.9 mg/kg, group 4 was the group of obese rats were fed ethanol extract of green coffee beans dose of 400 mg/kg, group 5 was the group of obese rats were given water extract of green coffee beans dose of 400 mg/kg, and group 6 was group of obese rats were fed a combination of orlistat dose of 15.9 mg/kgand ethanol extract of green coffee beans at a dose of 400 mg/kg. Lipid profi les and adiponectin levels were measured with a spectrophotometer at 500nm absorbance. The data were analyzed by one-way ANOVA, and then post hoc Least Significant Difference (LSD) with α = 0.05. Result: Ethanol extract of green coffee is more effi cient in lowering LDL cholesterol, increasing HDL cholesterol, and lowering the total cholesterol levels on HFD diet-induced mice, but there was no difference in lowering triglycerides . The combination of ethanol extract of green coffee with orlistat showedthe increasing of adiponectin levels were highest than the other treatment groups. Discussion: The ethanol extract of green coffee readily diffuses through the digestive tract epithelium. Green coffee contains chlorogenic acid active compounds that can increase the body’s metabolism, increase fatty acid oxidation, reduce levels of triglycerides in the liver, and working to inhibit lipase and amylase pancreaticenzymes. In addition to chlorogenic acid, polyphenol content in coffee is also potentially reduce visceral fat accumulation. Preparations extract by ethanol allows the absorption process is done effi ciently and quickly.Keywords: obesity, orlistat, greencoffee, lipid profi le, adiponectin


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Ashri Indriati ◽  
Dadang D Hidayat ◽  
Cecep E Andriansyah ◽  
Ari Rahayuningtyas ◽  
Arie Sudaryanto

The changes in physical, mechanical, and colours after roasting in two-level were investigated. Aims of this study were to evaluate changes in the physical, mechanical, and colours due to the roasting process of the Arabica and Robusta coffee bean grown in Cisalak Sub-District, Subang District-West Java. Results of analysis determined that the roasting process resulted in decreasing the moisture content of green coffee bean from 13.8% to 6,54% of first-level roasted bean and 6.24 of the second-level roasted bean, while that of robusta decreased from  11.22% to 7.56 and 6.12%. First-level roasting was categorised as a light roast, while the second-level was a medium roast. The Roast Weight Loss of arabica and robusta from green to light roast bean were 19.45 % and 16,24%, respectively, and that to medium roast bean was 26.20% and 22.37%, respectively. The roast volume change of arabica and robusta from green to light roast bean were 50.55% and 44.30 % respectively, and that to medium roast bean were 54.65% and 55.92 % respectively. The total colour differences between green with light and medium roast bean of arabica were 6.39 and 2.52, while that of robusta were 6.19 and 2.49, respectively.


2020 ◽  
Vol 60 (1) ◽  
pp. 79-88
Author(s):  
Dadang Dayat Hidayat ◽  
Arie Sudaryanto ◽  
Yose Rizal Kurniawan ◽  
Ashri Indriati ◽  
Diang Sagita

The design, manufacture and evaluation of a drum coffee roasting machine had been carried out. The aimed of the study was to develop a small-scale drum roaster to meet the demand of the small enterprises at design and function. The development stage consisted of sizing of the main components, creating technical drawings, determination of component materials, manufacture and performance test. The dimension of the roaster drum was 168.28 mm in diameter and 250 mm in length; the capacity of the roaster was 750 gram/ batch. Results of the test determined that the coffee roasting machine had worked well as expected. The preheating time was 15-22 minutes at a drum speed of 67.5 rpm. The initial loading temperature was 180°C. The test using arabica coffee bean reveals that the average crack time was 8.78 minutes, development time was 2.35 minutes, decreasing mass and increasing volume ranged from 19.80 – 20.30 % and 49.97 – 54.85 % respectively. The average crack time of Robusta coffee bean was 10 minutes; development time was 3 minutes, decreasing mass and increasing volume ranged from 10.87 – 14.90 % and 44.93 – 56.20 %, respectively. The required time to roast Arabica green coffee bean to the light-medium and medium-dark level was 11.3 and 12.38 minutes respectively, besides for Robusta green coffee beans was 13.00 and 14.00 minutes respectively.


Author(s):  
Dang Kim Thu ◽  
Vu Manh Hung ◽  
Nguyen Thi Trang ◽  
Bui Thanh Tung

Abstract: α-glucosidase enzyme is one of the important molecular targets in the treatment of diabetes. In addition, free radicals are the cause of insulin resistance, damage β- cell pancreatic, glucose uptake disorders and induced diabetes. In this study we evaluated the inhibitory effect of α-glucosidase enzyme and antioxidant effect by using DPPH free radical scavenging method of green coffee bean extract (Coffea canephora) and its fractions. Coffee beans were pulverized, extracted with ethanol 70% by sonications,  and fractionated with n-hexane, ethyl acetate (EtOAc) and n-butanol (n-BuOH) solvents. Our results showed that coffee bean extract has a strong α-glucosidase enzyme inhibitory activity, especially EtOAc fraction with an IC50 value of 2.21 ± 0.04 µg/mL. Furthermore, the coffee bean extract has an antioxidant effect by DPPH radical scavenging ability, and EtOAc fraction has the highest effect with an IC50 value of 25.69 ± 3.08 µg/ml. Our  results show that green coffee beans and EtOAc fraction have potential effect in preventing and supporting for the treatment of diabetes. Keywords Coffee; Coffea canephora; free radical; α-glucosidase; DPPH. References [1] Federation ID. IDF Diabetes Atlas 8th Edition (2017).[2] Wright Jr E, Scism‐Bacon J, Glass L. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. International journal of clinical practice 60(3) (2006) 308.[3] X. Chen. A review on coffee leaves: Phytochemicals, bioactivities and applications. Critical reviews in food science and nutrition 59(6) (2019) 1008.[4] Chu Y-F. Coffee: emerging health effects and disease prevention. John Wiley & Sons (2012).[5] N.T. Hai, D.K. Thu, B.T. Tung. Sarcandra glabra Extract Protects against Scopolamine Induced Cognitive Deficits by Modulating Neuroinflammation and the Cholinergic System. Current Enzyme Inhibition 14(3) (2018) 210.[6] B.T. Tung, D.K. Thu, P.T. Hai, N.T. Hai. Evaluation of α-glucosidase inhibitory activity of fractions from Punica granatum Linn fruits (in Vietnamese), Journal of Traditional Vietnamese Medicine and Pharmacy 5(18) (2018) 59.[7] S. Lenzen. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia 51(2) (2008) 216.[8] K. Shapiro, W.C. Gong . Natural products used for diabetes. Journal of the American Pharmaceutical Association 42(2) (2002) 217.[9] O. Babova, A. Occhipinti, M.E. Maffei. Chemical partitioning and antioxidant capacity of green coffee (Coffea arabica and Coffea canephora) of different geographical origin. Phytochemistry 123 (2016) 33.[10] A. Priftis, D. Stagos, K. Konstantinopoulos, C. Tsitsimpikou, D.A. Spandidos, A.M. Tsatsakis, et al. Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Molecular medicine reports 12(5) (2015) 7293.[11] N. Liang, D.D. Kitts. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 19(11) (2014) 19180.[12] Vieira TMFdS. Potential antioxidant of brazilian coffee from the region of Cerrado. Food Science and Technology 38(3) (2018) 447.[13] S.D. Kim. α-Glucosidase inhibitor isolated from coffee. J Microbiol Biotechnol 25(2) (2015) 174.[14] Y. Zheng, K. Liu, G. Jia, H. Li, L. Han, Y. Kimura Effect of hot-water extract of coffee seeds on postprandial blood glucose concentration in rats. (2007).    


Sign in / Sign up

Export Citation Format

Share Document