scholarly journals A Novel Phase Variation Mechanism in the Meningococcus Driven by a Ligand-Responsive Repressor and Differential Spacing of Distal Promoter Elements

2009 ◽  
Vol 5 (12) ◽  
pp. e1000710 ◽  
Author(s):  
Matteo M. E. Metruccio ◽  
Eva Pigozzi ◽  
Davide Roncarati ◽  
Francesco Berlanda Scorza ◽  
Nathalie Norais ◽  
...  
1985 ◽  
Vol 5 (2) ◽  
pp. 380-389
Author(s):  
S M Hanly ◽  
G C Bleecker ◽  
N Heintz

We have examined the nucleotide sequences necessary for transcription of a human histone H4 gene in vitro. Maximal transcription of the H4 promoter requires, in addition to the TATA box and cap site, promoter elements between 70 and 110 nucleotides upstream from the transcription initiation site. These distal promoter elements are recognized preferentially in extracts from synchronized S-phase HeLa cells. The inability of non-S-phase nuclear extracts to recognize the H4 upstream sequences reflects a specific lack of a transcription factor which interacts with those sequences. These results indicate that the cell cycle regulation of human histone gene expression involves both a specific transcription factor and distal transcription signals in the H4 promoter.


2018 ◽  
Author(s):  
Olga O Bochkareva ◽  
Elena V Moroz ◽  
Iakov I Davydov ◽  
Mikhail S Gelfand

AbstractBackgroundThe genus Burkholderia consists of species that occupy remarkably diverse ecological niches. Its best known members are important pathogens, B. mallei and B. pseudomallei, which cause glanders and melioidosis, respectively. Burkholderia genomes are unusual due to their multichromosomal organization.ResultsWe performed integrated genomic analysis of 127 Burkholderia strains. The pan-genome is open with the saturation to be reached between 86,000 and 88,000 genes. The reconstructed rearrangements indicate a strong avoidance of intra-replichore inversions that is likely caused by selection against the transfer of large groups of genes between the leading and the lagging strands. Translocated genes also tend to retain their position in the leading or the lagging strand, and this selection is stronger for large syntenies. Integrated reconstruction of chromosome rearrangements in the context of strains phylogeny reveals parallel rearrangements that may indicate inversion-based phase variation and integration of new genomic islands. In particular, we detected parallel inversions in the second chromosomes of B. pseudomallei with breakpoints formed by genes encoding membrane components of multidrug resistance complex, that may be linked to a phase variation mechanism. Two genomic islands, spreading horizontally between chromosomes, were detected in the B. cepacia group.ConclusionsThis study demonstrates the power of integrated analysis of pan-genomes, chromosome rearrangements, and selection regimes. Non-random inversion patterns indicate selective pressure, inversions are particularly frequent in a recent pathogen B. mallei, and, together with periods of positive selection at other branches, may indicate adaptation to new niches. One such adaptation could be a possible phase variation mechanism in B. pseudomallei.


2002 ◽  
Vol 184 (16) ◽  
pp. 4334-4342 ◽  
Author(s):  
Christine A. White-Ziegler ◽  
Alia M. Black ◽  
Stacie H. Eliades ◽  
Sarah Young ◽  
Kimberly Porter

ABSTRACT In uropathogenic Escherichia coli, P pili (Pap) facilitate binding to host epithelial cells and subsequent colonization. Whereas P pili can be produced at 37°C, the expression of these fimbriae is suppressed at 23°C. Previously, insertion mutations in rimJ, a gene encoding the N-terminal acetyltransferase of ribosomal protein S5, were shown to disrupt this thermoregulatory response, allowing papBA transcription at low temperature. In this study, we created an in-frame deletion of rimJ. This deletion relieved the repressive effects not only of low temperature but also of rich (Luria-Bertani [LB]) medium and glucose on papBA transcription, indicating that RimJ modulates papBA transcription in response to multiple environmental stimuli. papI transcription was also shown to be regulated by RimJ. papBA transcription is also controlled by a phase variation mechanism. We demonstrated that the regulators necessary to establish a phase ON state—PapI, PapB, Dam, Lrp, and cyclic AMP-CAP-are still required for papBA transcription in a rimJ mutant strain. rimJ mutations increase the rate at which bacteria transition into the phase ON state, indicating that RimJ inhibits the phase OFF→ON transition. A ΔrimJ hns651 mutant is viable on LB medium but not on minimal medium. This synthetic lethality, along with transcriptional analyses, indicates that RimJ and H-NS work through separate pathways to control papBA transcription. Mutations in rimJ do not greatly influence the transcription of the fan, daa, or fim operon, suggesting that RimJ may be a pap-specific regulator. Overexpression of rimJ under conditions repressive for papBA transcription complements the ΔrimJ mutation but has little effect on transcription under activating conditions, indicating that the ability of RimJ to regulate transcription is environmentally controlled.


1985 ◽  
Vol 5 (2) ◽  
pp. 380-389 ◽  
Author(s):  
S M Hanly ◽  
G C Bleecker ◽  
N Heintz

We have examined the nucleotide sequences necessary for transcription of a human histone H4 gene in vitro. Maximal transcription of the H4 promoter requires, in addition to the TATA box and cap site, promoter elements between 70 and 110 nucleotides upstream from the transcription initiation site. These distal promoter elements are recognized preferentially in extracts from synchronized S-phase HeLa cells. The inability of non-S-phase nuclear extracts to recognize the H4 upstream sequences reflects a specific lack of a transcription factor which interacts with those sequences. These results indicate that the cell cycle regulation of human histone gene expression involves both a specific transcription factor and distal transcription signals in the H4 promoter.


1990 ◽  
Vol 10 (7) ◽  
pp. 3512-3523 ◽  
Author(s):  
S Ayer ◽  
C Benyajati

The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH.


BMC Cancer ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinghua Chen ◽  
Jinhua Xu ◽  
Stanley Borowicz ◽  
Cindy Collins ◽  
Dezheng Huo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document