scholarly journals The Abi-domain Protein Abx1 Interacts with the CovS Histidine Kinase to Control Virulence Gene Expression in Group B Streptococcus

2013 ◽  
Vol 9 (2) ◽  
pp. e1003179 ◽  
Author(s):  
Arnaud Firon ◽  
Asmaa Tazi ◽  
Violette Da Cunha ◽  
Sophie Brinster ◽  
Elisabeth Sauvage ◽  
...  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009791
Author(s):  
Thierry Franza ◽  
Annika Rogstam ◽  
Saravanamuthu Thiyagarajan ◽  
Matthew J. Sullivan ◽  
Aurelie Derré-Bobillot ◽  
...  

In many Gram-positive bacteria, the redox-sensing transcriptional repressor Rex controls central carbon and energy metabolism by sensing the intra cellular balance between the reduced and oxidized forms of nicotinamide adenine dinucleotide; the NADH/NAD+ ratio. Here, we report high-resolution crystal structures and characterization of a Rex ortholog (Gbs1167) in the opportunistic pathogen, Streptococcus agalactiae, also known as group B streptococcus (GBS). We present structures of Rex bound to NAD+ and to a DNA operator which are the first structures of a Rex-family member from a pathogenic bacterium. The structures reveal the molecular basis of DNA binding and the conformation alterations between the free NAD+ complex and DNA-bound form of Rex. Transcriptomic analysis revealed that GBS Rex controls not only central metabolism, but also expression of the monocistronic rex gene as well as virulence gene expression. Rex enhances GBS virulence after disseminated infection in mice. Mechanistically, NAD+ stabilizes Rex as a repressor in the absence of NADH. However, GBS Rex is unique compared to Rex regulators previously characterized because of its sensing mechanism: we show that it primarily responds to NAD+ levels (or growth rate) rather than to the NADH/NAD+ ratio. These results indicate that Rex plays a key role in GBS pathogenicity by modulating virulence factor gene expression and carbon metabolism to harvest nutrients from the host.


2009 ◽  
Vol 191 (17) ◽  
pp. 5387-5397 ◽  
Author(s):  
Isabella Santi ◽  
Renata Grifantini ◽  
Sheng-Mei Jiang ◽  
Cecilia Brettoni ◽  
Guido Grandi ◽  
...  

ABSTRACT To identify factors involved in the response of group B streptococci (GBS) to environmental pH, we performed a comparative global gene expression analysis of GBS at acidic and neutral pHs. We found that the transcription of 317 genes was increased at pH 5.5 relative to that at pH 7.0, while 61 genes were downregulated. The global response to acid stress included the differential expression of genes involved in transport, metabolism, stress response, and virulence. Known vaccine candidates, such as BibA and pilus components, were also regulated by pH. We observed that many of the genes involved in the GBS response to pH are known to be controlled by the CsrRS two-component system. Comparison of the regulon of wild-type strain 2603 V/R with that of a csrRS deletion mutant strain revealed that the pH-dependent regulation of 90% of the downregulated genes and 59.3% of the up-regulated genes in strain 2603 V/R was CsrRS dependent and that many virulence factors were overexpressed at high pH. Beta-hemolysin regulation was abrogated by selective inactivation of csrS, suggesting the implication of the CsrS protein in pH sensing. These results imply that the translocation of GBS from the acidic milieu of the vagina to the neutral pH of the neonatal lung signals the up-regulation of GBS virulence factors and conversion from a colonizing to an invasive phenotype. In addition, the fact that increased exposure of BibA on the bacterial surface at pH 7.0 induced opsonophagocytic killing of GBS in immune serum highlights the importance of pH regulation in the protective efficacy of specific antibodies to surface-exposed GBS proteins.


2014 ◽  
Vol 82 (11) ◽  
pp. 4587-4595 ◽  
Author(s):  
Michelle L. Korir ◽  
David Knupp ◽  
Kathryn LeMerise ◽  
Erica Boldenow ◽  
Rita Loch-Caruso ◽  
...  

ABSTRACTGroup BStreptococcus(GBS) causes severe disease in neonates, the elderly, and immunocompromised individuals. GBS species are highly diverse and can be classified by serotype and multilocus sequence typing. Sequence type 17 (ST-17) strains cause invasive neonatal disease more frequently than strains of other STs. Attachment and invasion of host cells are key steps in GBS pathogenesis. We investigated whether four serotype III strains representing ST-17 (two strains), ST-19, and ST-23 differ in their abilities to attach to and invade both decidual cells and lung epithelial cells. Virulence gene expression following host cell association and exposure to amnion cells was also tested. The ST-17 strains differed in their abilities to attach to and invade decidual cells, whereas there were no differences with lung epithelial cells. The ST-19 and ST-23 strains, however, attached to and invaded decidual cells less than both ST-17 strains. Although the ST-23 strain attached to lung epithelial cells better than ST-17 and -19 strains, none of the strains effectively invaded the lung epithelial cells. Notably, the association with host cells resulted in the differential expression of several virulence genes relative to basal expression levels. Similar expression patterns of some genes were observed regardless of cell type used. Collectively, these results show that GBS strains differ in their abilities to attach to distinct host cell types and express key virulence genes that are relevant to the disease process. Enhancing our understanding of pathogenic mechanisms could aid in the identification of novel therapeutic targets or vaccine candidates that could potentially decrease morbidity and mortality associated with neonatal infections.


2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


2021 ◽  
Author(s):  
Mahsa Farjad ◽  
Gilles Clément ◽  
Alban Launay ◽  
Roua Jeridi ◽  
Sylvie Jolivet ◽  
...  

2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Kevin D. Mlynek ◽  
William E. Sause ◽  
Derek E. Moormeier ◽  
Marat R. Sadykov ◽  
Kurt R. Hill ◽  
...  

ABSTRACTStaphylococcus aureussubverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via theS. aureusexoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of thesaeP1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY repressessaeexpression by blocking SaeR binding. Epistasis experiments support a model that CodY also controlssaeindirectly through Agr and Rot-mediated repression of thesaeP1 promoter. We also demonstrate that CodY repression ofsaerestrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCEBacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens likeS. aureusproduce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by whichS. aureusdelays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


Sign in / Sign up

Export Citation Format

Share Document