scholarly journals Magnetic Control of an Electrochemical Microfluidic Device with an Arrayed Immunosensor for Simultaneous Multiple Immunoassays

2007 ◽  
Vol 53 (7) ◽  
pp. 1323-1329 ◽  
Author(s):  
Dianping Tang ◽  
Ruo Yuan ◽  
Yaqin Chai

Abstract Background: Methods based on magnetic bead probes have been developed for immunoassay, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Methods: We synthesized magnet core/shell NiFe2O4/SiO2 nanoparticles and fabricated an electrochemical magnetic controlled microfluidic device for the detection of 4 tumor markers. The immunoassay system consisted of 5 working electrodes and an Ag/AgCl reference electrode integrated on a glass substrate. Each working electrode contained a different antibody immobilized on the NiFe2O4/SiO2 nanoparticle surface and was capable of measuring a specific tumor marker using noncompetitive electrochemical immunoassay. Results: Under optimal conditions, the multiplex immunoassay enabled the simultaneous detection of 4 tumor markers. The sensor detection limit was <0.5 μg/L (or <0.5 kunits/L) for most analytes. Intra- and interassay imprecisions (CVs) were <4.5% and 8.7% for analyte concentrations >5 μg/L (or >5 kunits/L), respectively. No nonspecific adsorption was observed during a series of procedures to detect target proteins, and electrochemical cross-talk (CV) between neighboring sites was <10%. Conclusion: This immunoassay system offers promise for label-free, rapid, simple, cost-effective analysis of biological samples. Importantly, the chip-based immunosensor could be suitable for use in the mass production of miniaturized lab-on-a-chip devices and open new opportunities for protein diagnostics and biosecurity.

2021 ◽  
Author(s):  
Roopam K Gupta ◽  
Nils Hempler ◽  
Graeme Malcolm ◽  
Kishan Dholakia ◽  
Simon J Powis

T cells of the adaptive immune system provide effective protection to the human body against numerous pathogenic challenges. Current labelling methods of detecting these cells, such as flow cytometry or magnetic bead labelling, are time consuming and expensive. To overcome these limitations, the label-free method of digital holographic microscopy (DHM) combined with deep learning has recently been introduced which is both time and cost effective. In this study, we demonstrate the application of digital holographic microscopy with deep learning to classify the key CD4+ and CD8+ T cell subsets. We show that combining DHM of varying fields of view, with deep learning, can potentially achieve a classification throughput rate of 78,000 cells per second with an accuracy of 76.2% for these morphologically similar cells. This throughput rate is 100 times faster than the previous studies and proves to be an effective replacement for labelling methods.


Author(s):  
Min Yue ◽  
Jeanne C. Stachowiak ◽  
Henry Lin ◽  
Kenneth Castelino ◽  
Ram Datar ◽  
...  

A label-free technique capable of rapidly screening human blood samples simultaneously for multiple serum tumor markers would enable accurate and cost-effective diagnosis of cancer before physiological symptoms appear. Recently, microfabricated, bimaterial cantilever sensors have been demonstrated to detect DNA hybridization and antigen-antibody binding at clinically relevant concentrations. Cantilever sensors deflect measurably under the surface stress resulting when biomolecules immobilized on one surface of the sensor interact with their binding partners [1]. We present an array of cantilever sensors (silicon nitride with a gold coated surface) capable of simultaneously interrogating 100 different biomolecular interactions.


2006 ◽  
Vol 6 (11) ◽  
pp. 3499-3502 ◽  
Author(s):  
Dong-Won Park ◽  
Yo-Han Kim ◽  
Beom Soo Kim ◽  
Hye-Mi So ◽  
Keehoon Won ◽  
...  

We have developed a biosensor capable of detecting carcinoembryonic antigen (CEA) markers using single-walled carbon nanotube field effect transistors (SWNT-FETs). These SWNT-FETs were fabricated using nanotubes produced by a patterned catalyst growth technique, where the top contact electrodes were generated using conventional photolithography. For biosensor applications, SU-8 negative photoresist patterns were used as an insulation layer. CEA antibodies were employed as recognition elements to specific tumor markers, and were successfully immobilized on the sides of a single-walled carbon nanotube using CDI-Tween 20 linking molecules. The binding of tumor markers to these antibody-functionalized SWNT-FETs was then monitored continuously during exposure to dilute CEA solutions. The observed sharp decrease in conductance demonstrates the possibility of realizing highly sensitive, label-free SWNT-FET-based tumor sensors.


2018 ◽  
Vol 6 (35) ◽  
pp. 5613-5620 ◽  
Author(s):  
Wujuan Yan ◽  
Xiu-Hong Wang ◽  
Jingwen Yu ◽  
Xiaotong Meng ◽  
Pengfei Qiao ◽  
...  

Duplexed recognition of label-free breast cancer cells: a duplexed assay platform based on a BP nanoquencher allows simultaneous detection of two tumor markers within one run.


2003 ◽  
Vol 773 ◽  
Author(s):  
Myung-Il Park ◽  
Jonging Hong ◽  
Dae Sung Yoon ◽  
Chong-Ook Park ◽  
Geunbae Im

AbstractThe large optical detection systems that are typically utilized at present may not be able to reach their full potential as portable analysis tools. Accurate, early, and fast diagnosis for many diseases requires the direct detection of biomolecules such as DNA, proteins, and cells. In this research, a glass microchip with integrated microelectrodes has been fabricated, and the performance of electrochemical impedance detection was investigated for the biomolecules. We have used label-free λ-DNA as a sample biomolecule. By changing the distance between microelectrodes, the significant difference between DW and the TE buffer solution is obtained from the impedance-frequency measurements. In addition, the comparison for the impedance magnitude of DW, the TE buffer, and λ-DNA at the same distance was analyzed.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 42
Author(s):  
Shimrith Paul Shylendra ◽  
Wade Lonsdale ◽  
Magdalena Wajrak ◽  
Mohammad Nur-E-Alam ◽  
Kamal Alameh

In this work, a solid-state potentiometric pH sensor is designed by incorporating a thin film of Radio Frequency Magnetron Sputtered (RFMS) Titanium Nitride (TiN) working electrode and a commercial Ag|AgCl|KCl double junction reference electrode. The sensor shows a linear pH slope of −59.1 mV/pH, R2 = 0.9997, a hysteresis as low as 1.2 mV, and drift below 3.9 mV/h. In addition, the redox interference performance of TiN electrodes is compared with that of Iridium Oxide (IrO2) counterparts. Experimental results show −32 mV potential shift (E0 value) in 1 mM ascorbic acid (reducing agent) for TiN electrodes, and this is significantly lower than the −114 mV potential shift of IrO2 electrodes with sub-Nernstian sensitivity. These results are most encouraging and pave the way towards the development of miniaturized, cost-effective, and robust pH sensors for difficult matrices, such as wine and fresh orange juice.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 23990-23998 ◽  
Author(s):  
Gaoling Liang ◽  
Zhongjun Zhao ◽  
Yin Wei ◽  
Kunping Liu ◽  
Wenqian Hou ◽  
...  

A simple, label-free and cost-effective localized surface plasmon resonance (LSPR) immunosensing method was developed for detection of alpha-fetoprotein (AFP).


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 487
Author(s):  
Hongyan Xu ◽  
Zhangying Wu ◽  
Jinan Deng ◽  
Jun Qiu ◽  
Ning Hu ◽  
...  

The development of a simple, portable, and cost-effective plasma separation platform for blood biochemical analysis is of great interest in clinical diagnostics. We represent a plasma separation microfluidic device using microspheres with different sizes as the separation barrier. This plasma separation device, with 18 capillary microchannels, can extract about 3 μL of plasma from a 50 μL blood sample in about 55 min. The effects of evaporation and the microsphere barrier on the plasma biochemical analysis results were studied. Correction factors were applied to compensate for these two effects. The feasibility of the device in plasma biochemical analysis was validated with clinical blood samples.


Sign in / Sign up

Export Citation Format

Share Document