scholarly journals Work Flow Analysis of Around-the-clock Processing of Blood Culture Samples and Integrated MALDI-TOF Mass Spectrometry Analysis for the Diagnosis of Bloodstream Infections

2013 ◽  
Vol 59 (11) ◽  
pp. 1649-1656 ◽  
Author(s):  
Wilhelm Schneiderhan ◽  
Alexander Grundt ◽  
Stefan Wörner ◽  
Peter Findeisen ◽  
Michael Neumaier

BACKGROUND Because sepsis has a high mortality rate, rapid microbiological diagnosis is required to enable efficient therapy. The effectiveness of MALDI-TOF mass spectrometry (MALDI-TOF MS) analysis in reducing turnaround times (TATs) for blood culture (BC) pathogen identification when available in a 24-h hospital setting has not been determined. METHODS On the basis of data from a total number of 912 positive BCs collected within 140 consecutive days and work flow analyses of laboratory diagnostics, we evaluated different models to assess the TATs for batch-wise and for immediate response (real-time) MALDI-TOF MS pathogen identification of positive BC results during the night shifts. The results were compared to TATs from routine BC processing and biochemical identification performed during regular working hours. RESULTS Continuous BC incubation together with batch-wise MALDI-TOF MS analysis enabled significant reductions of up to 58.7 h in the mean TATs for the reporting of the bacterial species. The TAT of batch-wise MALDI-TOF MS analysis was inferior by a mean of 4.9 h when compared to the model of the immediate work flow under ideal conditions with no constraints in staff availability. CONCLUSIONS Together with continuous cultivation of BC, the 24-h availability of MALDI-TOF MS can reduce the TAT for microbial pathogen identification within a routine clinical laboratory setting. Batch-wise testing of positive BC loses a few hours compared to real-time identification but is still far superior to classical BC processing. Larger prospective studies are required to evaluate the contribution of rapid around-the-clock pathogen identification to medical decision-making for septicemic patients.

2020 ◽  
Vol 35 (2) ◽  
Author(s):  
Jari Intra ◽  
Cecilia Sarto ◽  
Giuseppe Serra ◽  
Paolo Brambilla

The infrequency of urinary tract and blood stream infections caused by Aerococcus urinae is most probably due to the difficulties in the identification of this bacterium using standard microbiological methods. With the introduction of more sensitive and accurate techniques in clinical microbiology, such as genetic approaches and Matrix-Assisted Laser Desorption/Ionization-Time Of Flight (MALDI-TOF) mass spectrometry (MS), the incidence of infections due to A. urinae increased. Herein, we described a case of urinary tract and bloodstream infection caused by A. urinae, which occurred in an 86-year-old Caucasian man with a previous history of prostate cancer. The identification of A. urinae was performed by MALDI-TOF MS, since this microorganism cannot be identified by biochemical reactions. In this report, we highlight the need to consider MALDI-TOF MS as technique of choice for A. urinae identification in the presence of subjects with predisposing factors, such as old age, male gender, and genitourinary tract pathologies.


2019 ◽  
Vol 3 (4) ◽  
pp. 255-259 ◽  
Author(s):  
Lindsay Y. Chun ◽  
Laura Dolle Molle ◽  
Olaf Schneewind ◽  
Dominique Missiakas ◽  
Kathleen G. Beavis ◽  
...  

Purpose:We report a case of a 72-year-old man with bleb-related endophthalmitis (BRE) whose vitreous samples were directly analyzed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to rapidly identify the causative organism, whereas the results from conventional microbiological techniques were negative.Methods:We analyzed BRE vitreous samples with MALDI-TOF MS (Vitek MS, bioMérieux) for rapid pathogen identification without prior culture. Samples were also analyzed with standard microbiological methods.Results:Within 1 hour of sample acquisition, MALDI-TOF MS identified Gemella sanguinis from the undiluted vitreous sample from vitrectomy without prior culture with a confidence value of 99.7%. Gram stain and cultures from aqueous and vitreous samples were negative for 28 days after acquisition. The patient’s right-eye vision improved from hand motion to 20/50 2 months later.Conclusions:Our findings suggest that the direct analysis of intraocular samples with MALDI-TOF MS could be a novel, promising adjuvant method of rapid endophthalmitis diagnosis.


Holzforschung ◽  
2005 ◽  
Vol 59 (3) ◽  
pp. 374-377 ◽  
Author(s):  
Olaf Schmidt ◽  
Wibke Kallow

Abstract MALDI-TOF MS differentiated mycelia within pairs each of the closely related indoor wood decay fungi Serpula lacrymans, S. himantioides, Coniophoraputena, C. marmorata, and Antrodia vaillantii, A. sinuosa. The method is thus suitable to identify unknown samples by spectrum comparison.


Author(s):  
Hazan Zengin Canalp ◽  
Banu Bayraktar

Using MALDI-TOF MS directly from blood culture bottles reduces the time required for pathogen identification, and the turnaround times for final identification have been compared with overnight incubation from solid media in previous studies. However, identification from a short incubation of agar plates has been increasingly accepted and successfully implemented in routine laboratories, but there is no data comparing direct MALDI-TOF MS with the short-term, incubated agar plates.


Author(s):  
N. Tyshkivskaya ◽  
A. Tyshkivskaya

Use of MALDI-TOF mass spectrometry to identify yeast and molds in animal feed. The material for the work was animal feed samples received for research from diff erent regions of Ukraine. The presence of yeast and molds was determined according to DSTU ISO 7954:2006. To establish the general contamination of the feed with micromycetes, the fungi were fi rst isolated from the feed by planting them on Saburo medium, and the serial dilution method was used to calculate the content of fungi diaspores in 1 g of feed. The feed samples were incubated and studied at a temperature of 24 ° C for 5–7 days. The identifi cation of molds was carried out using the MALDI-TOF method. In the process of mycological examination of feed during 2018–2019. 198 animal feed samples were examined. During the study period, the largest number of feed was examined, which was 30.4% in 2018, of the total number of samples (19.6% - feed for poultry, 10.8% - for pigs). For fi ve months of 2019, we observed the same trend: in 31.1% of cases, the defi nitions of yeast and molds in compound feeds prevailed, of which 19.8% accounted for compound feeds for poultry and in 11.3% of cases for pigs. In second place in the number of studies, corn samples are 11.9 and 11.3% in 2018 and 2019, respectively. The most common types of fungi in the feed were representatives of the genera Fusarium, Penicillium, Aspergillus, Alternaria, Mucor, Rhizopus, Cladosporium. The affi liation of microscopic fungi to specifi c genera was determined by assessing the morphology of the fungal colony on media and the morphology of conidiophore structures Particular attention was paid to microscopic fungi of the Fusarium family, which are producers of various mycotoxins. Using the MALDI Biotyper software, automatic identifi cation was performed based on a comparison of the collected initial spectra of the fungus with the reference spectra of the database of the instrument itself, as well as with the library of the University of Belgium (BCCM, Belgian Co-Ordinateo collections of micro-organism). Following the results of mass spectrometry, microscopic fungi of the Fusarium family were represented by 9 species. Of these, 5 species were most often found: F. proliferatum, F. acutatum, F. subglutinans, F. verticillioides. Among the fungi of the Aspergillus family, A. fl avus, A. pseudoglaucus, A. tubingensis, and A. niger predominated. Species identifi cation of microscopic fungi using mass spectrometry helps quickly and accurately identify mold fungi and yeast. Determination of the species affi liation of microscopic organisms occurs through analysis of the protein fraction of the lysate of microscopic fungi and yeast ("direct protein profi ling"). MALDI Biotyper software includes automatic identifi cation of molds based on a comparison of the output spectra with the reference spectra of the database. Identifi cation of microorganisms using MALDI-TOF MS is based on the assessment of ribosomal proteins that are usually present in the cell. The sensitivity of the MALDI-TOF MS method is 103106 m.k./cm. In this case, the accuracy of identifi cation depends on the amount of test material. To determine the likelyhood of identifi cation, a given logarithmic indicator is the compliance coeffi cient Score, the value of which is used to evaluate the reliability and adequacy of the results. The higher the match rate, the more likely it is to get the correct identifi cation result. MALDI-TOF technology for mass spectrometric identifi cation of micromycetes has a high measurement speed, low cost of reagents and materials used, and simple preparation holes. MALDI-TOF MS has a high diagnostic sensitivity. Key words: mold identifi cation, MALDI-TOF, mass spectrometry, Fusarium, Penicillium, Aspergillus, Alternaria, Mucor, Rhizopus, Cladosporium.


2010 ◽  
Vol 76 (18) ◽  
pp. 6248-6256 ◽  
Author(s):  
Annette Wensing ◽  
Stefan Zimmermann ◽  
Klaus Geider

ABSTRACT Pantoea stewartii subsp. stewartii is the causative agent of Stewart's wilt, a bacterial disease transmitted by the corn flea beetle mainly to sweet corn (Zea mays). In many countries, it is classified as a quarantine organism and must be differentiated from other yellow enteric bacteria frequently occurring with corn. We have created novel primers from the pstS-glmS region of P. stewartii for use in conventional PCR (cPCR) and quantitative PCR (qPCR). To facilitate rapid diagnosis, we applied matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Using whole-cell protein extracts, profiles were generated with a Bruker microflex machine, and the bacteria classified. P. stewartii strains were clearly distinguished from strains of Pantoea agglomerans, Pantoea dispersa, and Pantoea ananatis. Dendrogram analysis of the protein profiles confirmed the score values and showed the formation of separate clades for each species. The identification achieved by MALDI-TOF MS analysis agrees with the diagnosis by specific PCR primers. The combination of both methods allows a rapid and simple identification of the corn pathogen. P. stewartii subsp. stewartii and P. stewartii subsp. indologenes are highly related and can be distinguished not only by virulence assays and indole tests but also by a characteristic pattern in the nucleotide sequence of recA.


2007 ◽  
Vol 53 (7) ◽  
pp. 1254-1263 ◽  
Author(s):  
Richard KT Kam ◽  
Terence CW Poon ◽  
Henry LY Chan ◽  
Nathalie Wong ◽  
Alex Y Hui ◽  
...  

Abstract Background: The use of MALDI-TOF mass spectrometry (MS) in quantitative glycan profiling has not been reported. In this study, we attempted to establish a high-throughput quantitative assay for profiling serum N-glycome, and we applied the new assay to identifying serum N-glycans for diagnosis of liver fibrosis and cirrhosis. Methods: N-glycans from whole serum proteins in 2 μL serum were released by enzymatic digestion, cleaned up by hydrophilic chromatography, and subsequently quantitatively profiled with a linear MALDI-TOF MS system, which was originally designed for quantitative proteomic profiling. Serum N-glycome profiles from 46 patients with chronic hepatitis B infection and with different degrees of liver fibrosis were examined. Results: The intra- and interassay CVs of peak intensities of the standard N-glycans were <8% and <17%, respectively. When the assay was applied to the analysis of serum N-glycome profiles, 17 peaks were found to be potential biomarkers for detection of liver fibrosis/cirrhosis. Linear regression analysis revealed that 4 peaks of 1341.5, 1829.7, 1933.3, and 2130.3 m/z (all P <0.005) had complementary value in detecting liver fibrosis and included them, but not any serological markers, in the diagnostic model. Leave-one-out cross-validation showed the diagnostic model could identify significant fibrosis (Ishak score ≥3) and cirrhosis (Ishak score ≥5), both at 85% accuracy. Conclusion: This is the first study to illustrate the quantitative aspect of MALDI-TOF MS in N-glycome profiling and the first study to reveal the potential value of the serum N-glycan profile for identifying liver fibrosis.


2021 ◽  
Vol 9 (10) ◽  
pp. 2006
Author(s):  
Tabea P. Wendel ◽  
Maureen Feucherolles ◽  
Jacqueline Rehner ◽  
Sven Poppert ◽  
Jürg Utzinger ◽  
...  

Taenia saginata is a helminth that can cause taeniasis in humans and cysticercosis in cattle. A species-specific diagnosis and differentiation from related species (e.g., Taenia solium) is crucial for individual patient management and disease control programs. Diagnostic stool microscopy is limited by low sensitivity and does not allow discrimination between T. saginata and T. solium. Molecular diagnostic approaches are not routinely available outside research laboratories. Recently, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) was proposed as a potentially suitable technique for species-specific helminth diagnosis. However, standardized protocols and commercial databases for parasite identification are currently unavailable, and pre-analytical factors have not yet been assessed. The purpose of this study was to employ MALDI-TOF MS for the identification of T. saginata proglottids obtained from a human patient, and to assess the effects of different sample storage media on the technique’s diagnostic accuracy. We generated T. saginata-specific main spectral profiles and added them to an in-house database for MALDI-TOF MS-based diagnosis of different helminths. Based on protein spectra, T. saginata proglottids could be successfully differentiated from other helminths, as well as bacteria and fungi. Additionally, we analyzed T. saginata proglottids stored in (i) LC–MS grade water; (ii) 0.45% sodium chloride; (iii) 70% ethanol; and (iv) 37% formalin after 2, 4, 6, 8, 12, and 24 weeks of storage. MALDI-TOF MS correctly identified 97.2–99.7% of samples stored in water, sodium chloride, and ethanol, with log-score values ≥2.5, thus indicating reliable species identification. In contrast, no protein spectra were obtained for samples stored in formalin. We conclude that MALDI-TOF-MS can be successfully employed for the identification of T. saginata, and that water, sodium chloride, and ethanol are equally effective storage solutions for prolonged periods of at least 24 weeks.


2018 ◽  
Vol 54 (82) ◽  
pp. 11546-11549 ◽  
Author(s):  
Zengnan Wu ◽  
Ling Lin ◽  
Mashooq Khan ◽  
Weifei Zhang ◽  
Sifeng Mao ◽  
...  

A DNA-mediated rolling circle amplification (RCA) strategy was established for ultrasensitive and specific detection of thrombin via MALDI-TOF MS.


2016 ◽  
Vol 7 (8) ◽  
pp. 5448-5452 ◽  
Author(s):  
Ziyi He ◽  
Qiushui Chen ◽  
Fengming Chen ◽  
Jie Zhang ◽  
Haifang Li ◽  
...  

A MALDI-TOF MS based approach is developed for multiplexed profiling of cell surface glycans using a DNA-mediated cell surface engineering strategy.


Sign in / Sign up

Export Citation Format

Share Document