Electron Microscopic Enzyme Cytochemistry

Author(s):  
Nobukazu Araki ◽  
Tanenori Hatae
1983 ◽  
Vol 31 (9) ◽  
pp. 1077-1088 ◽  
Author(s):  
R D Broadwell ◽  
A M Cataldo

The endoplasmic reticulum (ER) and its contribution to the endomembrane system (i.e., membranes of cell organelles) in the neuron have been investigated in brains of mice by applying electron microscopic enzyme cytochemistry for demonstration of glucose-6-phosphatase (G6Pase) activity. The phosphohydrolytic activity of G6Pase is a well-known cytochemical marker for the ER in numerous cell types. Of the different substrates employed, glucose-6-phosphate and mannose-6-phosphate were the only two with which G6Pase reaction product was seen in the neuronal ER and organelles related morphologically to the ER. G6Pase activity in cell bodies and dendrites was localized consistently within the lumen of the nuclear envelope, rough and smooth ER, lamellar bodies, hypolemmal and subsurface cisternae, and frequently in the cis saccules of the Golgi apparatus. The G6Pase reactive ER appeared as a network of saccules and tubules pervading the cell body and its dendrites. Possible membrane continuities were identified between the ER and the other reactive structures, including the cis half of the Golgi apparatus. Neither G6Pase activity nor reactive ER was associated with the trans Golgi saccules or GERL. G6Pase activity thus serves as a reliable marker for the perikaryal and dendritic ER and related structures. These observations support the theory that the ER is an integral component of the neuronal endomembrane system associated with the transfer of membrane or membrane molecules among intracellular compartments, the packaging and transport of exportable protein, and energy metabolism. G6Pase activity in the ER of axons and terminals is considered in detail in part two of this study.


1995 ◽  
Vol 43 (10) ◽  
pp. 981-991 ◽  
Author(s):  
K Nakazawa ◽  
S S Spicer ◽  
B A Schulte

The transport enzyme Na,K-ATPase has been localized to several different cell types within the inner ear by enzyme cytochemistry, immunohistochemistry, and in situ hybridization. Although these histochemical procedures have provided a fairly consistent pattern of the enzyme's distribution, the precise location of Na,K-ATPase in the cell membrane of some polarized and non-polarized cell types remains uncertain. We addressed this problem in the gerbil cochlea using electron microscopic immunogold cytochemistry. The results confirmed prior ultrastructural localization of Na,K-ATPase along the basolateral plasma membrane of strial marginal and outer sulcus epithelial cells but differed from a previous report in failing to detect the enzyme at the surface of strial intermediate cells. The findings also concurred with and extended previous work in showing immunogold labeling along the entire cell membrane of non-polarized Type II fibrocytes in the inferior portion of the spiral ligament and of subpopulations of fibrocytes in the suprastrial and supralimbal regions. Our observations agreed further with light microscopic immunostaining in displaying uniform gold labeling for Na,K-ATPase in the neurilemma of Type I spiral ganglion neurons, even though these cells are completely ensheathed by myelin. Surprisingly, the enzyme was detectable in the neurilemma of afferent but not that of efferent nerve processes beneath hair cells.


1995 ◽  
Vol 43 (9) ◽  
pp. 927-932 ◽  
Author(s):  
K Saga ◽  
Y Morimoto

Alkaline phosphatase (ALP) is a membrane-bound enzyme that catalyzes the hydrolysis of inorganic and organic monophosphate esters at alkaline pH. Although the functions of ALP are poorly understood, it is believed to be involved in membrane transport. Because little is known about the functions and distribution of ALP in the sweat glands, we studied the localization of ALP in human sweat glands with light and electron microscopic enzyme cytochemistry. In eccrine sweat glands, ALP was restricted to the cell membranes of intercellular canaliculi. Luminal cell membranes of secretory cells that are in continuity with intercellular canaliculi did not show ALP activity. These results suggest that ALP participates in the production of primary sweat at intercellular canaliculi. In apocrine sweat glands, basal cell membranes of secretory cells and myoepithelial cell membranes that were in apposition with each other showed ALP activity, where as no activity was seen in eccrine sweat glands. These differences in the distribution of ALP in myoepithelial cells between eccrine and apocrine sweat glands might be related to the functional differences of these sweat glands. ALP histochemistry could help to diagnose and to determine the direction of differentiation in sweat gland tumors.


1996 ◽  
Vol 10 (2) ◽  
pp. 245-251 ◽  
Author(s):  
A.E. Zaki ◽  
A.R. Hand ◽  
M.I. Mednieks ◽  
D.R. Eisenmann ◽  
J.L. Borke

Our previous studies revealed intense membrane-associated labeling for Ca2+-Mg2+ ATPase (Ca2+-pump) in secretory and maturation ameloblasts in the rat incisor, both by enzyme cytochemistry and by immunohistochemical techniques. The purpose of the present study was to map the distribution of Ca2+-pump protein at the cellular and subcellular levels by means of a Ca2+-pump-specific monoclonal antibody and electron microscopic immunogold cytochemistry. Tissue specimens were dissected from secretory, early, and late enamel maturation zones. We quantified results by comparing gold particle densities over ameloblast lateral and distal plasma membrane regions, supranuclear cytoplasm, regions of the ruffled borders, and nuclei. The highest concentration of gold particles was seen over the distal membranes of early-maturation ameloblasts relative to those in late-maturation and secretory stages. Cytoplasmic labeling was less than that of the distal and lateral membranes, and gold particles located over nuclei were considered to be due to non-specific binding. These results are consistent with our earlier findings and suggest a role for the plasma membrane Ca2+-pump in the regulation of calcium availability to mineralizing enamel.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
V. F. Allison ◽  
G. C. Fink ◽  
G. W. Cearley

It is well known that epithelial hyperplasia (benign hypertrophy) is common in the aging prostate of dogs and man. In contrast, little evidence is available for abnormal epithelial cell growth in seminal vesicles of aging animals. Recently, enlarged seminal vesicles were reported in senescent mice, however, that enlargement resulted from increased storage of secretion in the lumen and occurred concomitant to epithelial hypoplasia in that species.The present study is concerned with electron microscopic observations of changes occurring in the pseudostratified epithelium of the seminal vescles of aging rats. Special attention is given to certain non-epithelial cells which have entered the epithelial layer.


Author(s):  
Glennelle Washington ◽  
Philip P. McGrath ◽  
Peter R. Graze ◽  
Ivor Royston

Herpes-like viruses were isolated from rhesus monkey peripheral blood leucocytes when co-cultivated with WI-38 cells. The virus was originally designated rhesus leucocyte-associated herpesvirus (LAHV) and subsequently called Herpesvirus mulatta (HVM). The original isolations were from juvenile rhesus monkeys shown to be free of antibody to rhesus cytomegalic virus. The virus could only be propagated in human or simian fibroblasts. Use of specific antisera developed from HVM showed no relationship between this virus and other herpesviruses. An electron microscopic study was undertaken to determine the morphology of Herpesvirus mulatta (HVM) in infected human fibroblasts.


Author(s):  
Mitsuo Ohtsuki ◽  
Michael Sogard

Structural investigations of biological macromolecules commonly employ CTEM with negative staining techniques. Difficulties in valid image interpretation arise, however, due to problems such as variability in thickness and degree of penetration of the staining agent, noise from the supporting film, and artifacts from defocus phase contrast effects. In order to determine the effects of these variables on biological structure, as seen by the electron microscope, negative stained macromolecules of high density lipoprotein-3 (HDL3) from human serum were analyzed with both CTEM and STEM, and results were then compared with CTEM micrographs of freeze-etched HDL3. In addition, we altered the structure of this molecule by digesting away its phospholipid component with phospholipase A2 and look for consistent changes in structure.


Sign in / Sign up

Export Citation Format

Share Document