Complexes of DNA Vaccines With Cationic, Antigenic Peptides Are Potent, Polyvalent CD8+ T-Cell-Stimulating Immunogens

DNA Vaccines ◽  
2006 ◽  
pp. 159-170 ◽  
Author(s):  
Petra Riedl ◽  
Jörg Reimann ◽  
Reinhold Schirmbeck
2021 ◽  
Vol 6 (59) ◽  
pp. eabh1516
Author(s):  
Marion Moreews ◽  
Kenz Le Gouge ◽  
Samira Khaldi-Plassart ◽  
Rémi Pescarmona ◽  
Anne-Laure Mathieu ◽  
...  

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vβ21.3 T cell receptor β chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vβ21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vβ21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


2018 ◽  
Vol 18 (5) ◽  
Author(s):  
A Reum Kim ◽  
Junsik Park ◽  
Jong Hoon Kim ◽  
Jeong-Eun Kwak ◽  
Youngran Cho ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Laura Lambert ◽  
Ekaterina Kinnear ◽  
Jacqueline U. McDonald ◽  
Gunnveig Grodeland ◽  
Bjarne Bogen ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A828-A828
Author(s):  
Raymond Moniz ◽  
Ahmet Vakkasoglu ◽  
Zohra Merazga ◽  
Tina Daigneault ◽  
Steve Quayle ◽  
...  

BackgroundA key challenge with IL-2 immunotherapy for cancers is lack of selectivity for anti-tumor immune cells and safety liabilities related to indiscriminate activation of immune cells. The CUE-100 series of Immuno-STATs (ISTs) are designed to selectively activate tumor-specific T cells while avoiding IL-2 toxicities due to systemic activation. CUE-100 series ISTs are rationally engineered Fc fusion proteins comprised of bivalent tumor-peptide-HLA (pHLA) complexes and four affinity-attenuated IL-2 molecules to preferentially engage and activate tumor-specific T cells directly in the patient. Emerging clinical data from our lead candidate CUE-101, which targets HPV-specific T cells in 2L+ R/M HNSCCC, provides PoC for the approach and builds confidence for broad applications in numerous cancers. Building on the CUE-100 series framework, our Neo-STAT (NST) platform contains HLA molecules manufactured with an “empty” peptide-binding pocket, into which diverse tumor-peptides can be chemically conjugated, hence addressing tumor heterogeneity in a cost- and time-efficient manner. Our RDI-STAT (Re-Directed Immuno-STAT) platform further expands the CUE-100 series by redirecting the pre-existing protective viral-specific T cell repertoire to target tumor cells via scFv moieties. RDI-STATs are designed to circumvent potential tumor escape mechanisms linked to HLA loss or defects in antigen-presenting pathways. We present here preclinical data supporting the mechanism of action of these platforms to enhance anti-tumor immune responses.MethodsNSTs were engineered with “empty” HLA-A*0201, into which relevant antigenic peptides were conjugated, and assessed for capacity to expand T cells. RDI-STATs were engineered with TAA-specific scFv and viral-specific pHLA complexes, and assessed for their capacity to induce redirected killing of tumor cells while avoiding systemic activation of all T cells.ResultsThe NST platform demonstrated that different T cell epitopes can be efficiently conjugated into the HLA-binding pocket, and that these molecules activate and expand antigen specific T cells in vitro. RDI-STATs were able to expand anti-viral T cell repertoires and drive anti-viral T cell redirected killing of TAA-expressing cells. In contrast to pan anti-CD3 bispecific molecules, RDI-STATs demonstrated significantly lower induction of pro-inflammatory cytokines.ConclusionsThe IST, NST, and RDI-STAT platforms provide novel opportunities for selective targeting of IL-2 to tumor-relevant T cells while avoiding global immune activation and cytokine release. The scalability and versatility of NSTs highlight the potential to target multiple TAA T cell responses, while RDI-STATs highlight a novel means to harness antiviral immunity against cancer, especially in cases where the tumor may escape immune detection due to loss of HLA.


2001 ◽  
Vol 276 (50) ◽  
pp. 47320-47328 ◽  
Author(s):  
Jennifer Buslepp ◽  
Rui Zhao ◽  
Debora Donnini ◽  
Douglas Loftus ◽  
Mohamed Saad ◽  
...  

Recognition of virally infected cells by CD8+T cells requires differentiation between self and nonself peptide-class I major histocompatibility complexes (pMHC). Recognition of foreign pMHC by host T cells is a major factor in the rejection of transplanted organs from the same species (allotransplant) or different species (xenotransplant). AHIII12.2 is a murine T cell clone that recognizes the xenogeneic (human) class I MHC HLA-A2.1 molecule (A2) and the syngeneic murine class I MHC H-2 Dbmolecule (Db). Recognition of both A2 and Dbare peptide-dependent, and the sequences of the peptides recognized have been determined. Alterations in the antigenic peptides bound to A2 cause large changes in AHIII12.2 T cell responsiveness. Crystal structures of three representative peptides (agonist, null, and antagonist) bound to A2 partially explain the changes in AHIII12.2 responsiveness. Using class I pMHC octamers, a strong correlation is seen between T cell activity and the affinity of pMHC complexes for the T cell receptor. However, contrary to previous studies, we see similar half-lives for the pMHC multimers bound to the AHIII12.2 cell surface.


2009 ◽  
Vol 423 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Kurt H. Piepenbrink ◽  
Oleg Y. Borbulevych ◽  
Ruth F. Sommese ◽  
John Clemens ◽  
Kathryn M. Armstrong ◽  
...  

TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide–MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax11-19] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a ‘polar hydrophobicity’ mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1660
Author(s):  
Sara Feola ◽  
Jacopo Chiaro ◽  
Beatriz Martins ◽  
Vincenzo Cerullo

According to the latest available data, cancer is the second leading cause of death, highlighting the need for novel cancer therapeutic approaches. In this context, immunotherapy is emerging as a reliable first-line treatment for many cancers, particularly metastatic melanoma. Indeed, cancer immunotherapy has attracted great interest following the recent clinical approval of antibodies targeting immune checkpoint molecules, such as PD-1, PD-L1, and CTLA-4, that release the brakes of the immune system, thus reviving a field otherwise poorly explored. Cancer immunotherapy mainly relies on the generation and stimulation of cytotoxic CD8 T lymphocytes (CTLs) within the tumor microenvironment (TME), priming T cells and establishing efficient and durable anti-tumor immunity. Therefore, there is a clear need to define and identify immunogenic T cell epitopes to use in therapeutic cancer vaccines. Naturally presented antigens in the human leucocyte antigen-1 (HLA-I) complex on the tumor surface are the main protagonists in evocating a specific anti-tumor CD8+ T cell response. However, the methodologies for their identification have been a major bottleneck for their reliable characterization. Consequently, the field of antigen discovery has yet to improve. The current review is intended to define what are today known as tumor antigens, with a main focus on CTL antigenic peptides. We also review the techniques developed and employed to date for antigen discovery, exploring both the direct elution of HLA-I peptides and the in silico prediction of epitopes. Finally, the last part of the review analyses the future challenges and direction of the antigen discovery field.


2001 ◽  
Vol 75 (20) ◽  
pp. 9665-9670 ◽  
Author(s):  
Mohamed T. Shata ◽  
David M. Hone

ABSTRACT A prototype Shigella human immunodeficiency virus type 1 (HIV-1) gp120 DNA vaccine vector was constructed and evaluated for immunogenicity in a murine model. For comparative purposes, mice were also vaccinated with a vaccinia virus-env(vaccinia-env) vector or the gp120 DNA vaccine alone. Enumeration of the CD8+-T-cell responses to gp120 after vaccination using a gamma interferon enzyme-linked spot assay revealed that a single intranasal dose of the Shigella HIV-1 gp120 DNA vaccine vector elicited a CD8+ T-cell response to gp120, the magnitude of which was comparable to the sizes of the analogous responses to gp120 that developed in mice vaccinated intraperitoneally with the vaccinia-env vector or intramuscularly with the gp120 DNA vaccine. In addition, a single dose of the Shigella gp120 DNA vaccine vector afforded significant protection against a vaccinia-env challenge. Moreover, the number of vaccinia-env PFU recovered in mice vaccinated intranasally with the Shigella vector was about fivefold less than the number recovered from mice vaccinated intramuscularly with the gp120 DNA vaccine. Since theShigella vector did not express detectable levels of gp120, this report confirms that Shigella vectors are capable of delivering passenger DNA vaccines to host cells and inducing robust CD8+ T-cell responses to antigens expressed by the DNA vaccines. Furthermore, to our knowledge, this is the first documentation of antiviral protective immunity following vaccination with a live Shigella DNA vaccine vector.


Sign in / Sign up

Export Citation Format

Share Document