scholarly journals The Properties of Strength Development of High Volume Fly Ash Concrete with Reduction of Unit Water Content

Author(s):  
Yun-Wang Choi ◽  
Man-Seok Park ◽  
Byung-Keol Choi ◽  
Sung-Rok Oh
2016 ◽  
Vol 722 ◽  
pp. 157-162 ◽  
Author(s):  
Martin Labaj ◽  
Rudolf Hela ◽  
Iveta Hájková

By volume, there is no other material used as much as concrete. Its mechanical properties, durability and favorable price makes concrete the perfect construction material. In last few decades, we are seeing a growing trend of partial Portland cement’s replacement with secondary raw materials, most commonly with fly ash. So-called high volume fly ash (HVFA) concretes usually contains over 50% of it. While HVFA concrete’s long-term properties and price are improved over the classical one, its early age properties are often affected negatively. Here, a highly reactive pozzolans enters the scene. Materials like microsilica and metakaolin are known to accelerate concrete’s strength development and improve early age characteristics. In this paper, nanosilica is used for this purpose. These SiO2 nanoparticles possesses a much higher surface area and thus reactivity. Three mixtures with 0, 40 a 60% portland cement’s replacement with fly ash were prepared and tested with and without addition of small amount of nanosilica. Effects on compressive strength, static and dynamic moduli of elasticity and resistivity against water pressure were observed. Results clearly demonstrates that even with dosage in the range of tenths of percent, nanosilica can significantly improve concrete’s properties.


2016 ◽  
Vol 872 ◽  
pp. 271-275 ◽  
Author(s):  
Mochamad Solikin

This paper presents a research to produce high strength concrete incorporated with fly ash as cement replacement up to 50% (high volume fly ash concrete) by using local material. The research is conducted by testing the strength development of high volume fly ash concrete at the age of 14 days, 28 days and 56 days. As a control mix, the compressive strength of Ordinary Portland Cement (OPC) concrete without fly ash is used. Both concrete mixtures use low w/c. consequently, they lead to the use of 1 % superplasticizer to reach sufficient workability in the process of casting. The specimens are concrete cubes with the dimension of 15 cm x15 cm x 15 cm. The totals of 24 cubes of HVFA concrete and OPC concrete are used as specimens of testing. The compressive strength design of concrete is 45 MPa and the slump design is ± 10 cm. The result shows that the compressive strengths of OPC concrete at the age of 14 days, 28 days, and 56 days are 38 MPa, 40 MPa, and 42 MPa. Whereas the compressive strength of HVFA concrete in the same age of immersing sequence are 29 MPa, 39 MPa, and 42 MPa. The result indicates that HVFA concrete can reach the similar compressive strength as that of normal concrete especially at the age of 56 days by deploying low water cement ratio.


2016 ◽  
Vol 678 ◽  
pp. 99-108 ◽  
Author(s):  
B. Balakrishnan ◽  
A.S.M. Abdul Awal

The utilization of waste materials in concrete is one of the best value added solutions to the construction industry. With the aim of sustability development, high volume fly ash (HVFA) were tested in concrete by substituting 40, 50 and 60% of OPC with fly ash. Properties studied in this research includes fresh concrete properties, mechanical properties and the resistance of concrete exposed to high temperature. The test result indicates that HVFA concrete positively influenced the workability; however, the setting times of the concrete were longer. It has been found that the development of strength of high volume fly ash concrete was relatively slower, but ahigher strength development at later ages was observed in concrete containing HVFA. The performance of concrete at elevated temperatures reveals that concrete without any fly ash has better resistance than HVFA concrete at high temperature. The use of high volume fly ash results in an acceptable concrete performance, which grants high potential for energy saving in the building construction.


2020 ◽  
Vol 55 (15) ◽  
pp. 6441-6456 ◽  
Author(s):  
Chamila Gunasekara ◽  
Zhiyuan Zhou ◽  
David W. Law ◽  
Massoud Sofi ◽  
Sujeeva Setunge ◽  
...  

1990 ◽  
Vol 12 (4) ◽  
pp. 263-270 ◽  
Author(s):  
V. Sivasundaram ◽  
G.G. Carette ◽  
V.M. Malhotra

2021 ◽  
pp. 103168
Author(s):  
Charith Herath ◽  
Chamila Gunasekara ◽  
David W. Law ◽  
Sujeeva Setunge

Sign in / Sign up

Export Citation Format

Share Document